Skip to main content

Multiplierless Reversible Integer TDLT/KLT for Lossy-to-Lossless Hyperspectral Image Compression

  • Chapter
  • First Online:
Book cover Satellite Data Compression

Abstract

Hyperspectral images have wide applications nowadays such as in atmospheric detection, remote sensing and military affairs. However, the volume of a hyperspectral image is so large that a 16bit AVIRIS image with a size 512 × 512 × 224 will occupy 112 M bytes. Therefore, efficient compression algorithms are required to reduce the cost of storage or bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Xu, Z. Xiong, S. Li, and Y. Zhang, “3-D embedded subband coding with optimal truncation (3-D ESCOT),” Applied and Computational Harmonic Analysis, vol.10, pp.290–315, May 2001.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. E. Fowler and D. N. Fox, “Embedded wavelet-based coding of three dimensional oceanographic images with land masses,” IEEE Transactions on Geoscience and Remote Sensing, vol.39, no.2, pp.284–290, February 2001.

    Article  Google Scholar 

  3. X. Tang, W. A. Pearlman, and J. W. Modestino, “Hyperspectral image compression using three-dimensional wavelet coding,” in proceedings SPIE, vol.5022, pp.1037–1047, 2003.

    Google Scholar 

  4. Q. Du and J. E. Fowler, “Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis,” IEEE Geoscience and Remote sensing letters, vol.4, pp.201–205, April 2007.

    Article  Google Scholar 

  5. P. L. Dragotti, G. Poggi, and A. R. P. Ragozini, “Compression of multispectral images by three-dimensional SPIHT algorithm,” IEEE Geoscience and Remote sensing letters, vol.38, no. 1, pp. 416–428, January 2000.

    Article  Google Scholar 

  6. B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform Coding Techniques for Lossy Hyperspectral Data Compression,” IEEE Geoscience and Remote sensing letters, vol.45, no.5, pp.1408–1421, May 2007.

    Article  Google Scholar 

  7. B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geoscience and Remote sensing letters, vol.3, no.1, pp.125–129, January 2006.

    Article  Google Scholar 

  8. W. Sweldens, “The lifting scheme: A construction of second generation wavelet,” in SIAM Journal on Mathematical Analysis, vol.29, pp.511–546, 1997.

    Article  MathSciNet  Google Scholar 

  9. I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” The Journal of Fourier Analysis and Applications, vol.4, pp.247–269, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.Bilgin, G. Zweig, and M. W. Marcellin, “Three-dimensional image compression using integer wavelet transforms,” Applied Optics, vol.39, pp.1799–1814, April 2000.

    Article  Google Scholar 

  11. Z. Xiong, X. Wu, S. Cheng, and J. Hua, “Lossy-to-Lossless Compression of Medical Volumetric Data Using Three-Dimensional Integer Wavelet Transforms,” IEEE Transactions on Medical Imaging, vol.22, no.3, pp.459–470, March 2003.

    Article  Google Scholar 

  12. P. Hao and Q. Shi, “Reversible integer KLT for progressive-to-lossless compression of multiple component images,” in Proceedings IEEE International Conference Image Processing (ICIP’03), Barcelona, Spain, pp.I-633–I-636, 2003.

    Google Scholar 

  13. L. Galli and S. Salzo, “Lossless hyperspectral compression using KLT,” IEEE International Geoscience and Remote Sensing Symposium, (IGARSS2004), vol.1, pp.313–316, September 2004.

    Google Scholar 

  14. C. Kwan, B. Li, R. Xu, X. Li, T. Tran, and T. Nguyen, “A Complete Image Compression Method Based on Overlapped Block Transform with Post-Processing,” EURASIP Journal on Applied Signal Processing, pp.1–15, January 2006.

    Google Scholar 

  15. P. List, A. Joch, J. Lainema, G. Bjontegaard, M. Karczewicz, “Adaptive deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp.614–619, July 2003.

    Article  Google Scholar 

  16. Xiong ZX, Orchard MT, Zhang YQ, “A deblocking algorithm for JPEG compressed images using overcomplete wavelet representations,” IEEE Transactions on Circuits and Systems for Video Technology, vol.7, no.2, pp.433–437, April 1997.

    Article  Google Scholar 

  17. P. Cassereau, “A New Class of Optimal Unitary Transforms for Image Processing”, Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1985.

    Google Scholar 

  18. H. S. Malvar, “Lapped transforms for efficient transform/subband coding”, IEEE Transactions on Acoustics, Speech, and Signal Processing, pp.969–978, ASSP-38. 1990.

    Google Scholar 

  19. C.W. Lee and H. Ko, “Arbitrary resizing of images in DCT domain using lapped transforms”, Electronics Letters, vol.41, pp.1319–1320, November 2005.

    Article  Google Scholar 

  20. T. D. Tran, J. Liang, and C. Tu, “Lapped transform via time-domain pre- and post-processing,” IEEE Transactions on Signal Processing, vol.51, no.6, pp.1557–1571, January 2003.

    Article  MathSciNet  Google Scholar 

  21. Chengjie Tu, and Trac D. Tran, “Context-based entropy coding of block transform coefficients for image compression,” IEEE Transactions on Image Processing, vol.11, no.11, pp. 1271–1283, January 2002.

    Article  MathSciNet  Google Scholar 

  22. Jie Liang, Trac D. Tran, “Fast Multiplierless Approximations of the DCT with the Lifting Scheme,” IEEE Transactions on Signal Processing, vol.49, no.12, pp.3032–3044, December 2001.

    Article  Google Scholar 

  23. http://www.microsoft.com/whdc/xps/hdphotodpk.mspx

  24. S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan, “HD Photo: a new image coding technology for digital photography,” in Proceedings SPIE Applications of Digital Image Processing XXX, San Diego, vol.6696, pp.66960A, August 2007.

    Google Scholar 

  25. C. Tu, S. Srinivasan, G. J. Sullivan, S. Regunathan, and H. S. Malvar, “Low-complexity hierarchical lapped transform for lossy-to-lossless image coding in JPEG XR//HD Photo,” in Proceedings SPIE Applications of Digital Image Processing XXXI, San Diego,vol.7073, pp.70730 C1-12,August 2008.

    Google Scholar 

  26. Y. Chen, S. Oraintara, and T. Nguyen, “Integer discrete cosine transform (IntDCT),” in Proceedings 2nd International Conference Information and Communication of Signal Processing, December 1999.

    Google Scholar 

  27. G.C.K. Abhayaratne, “Reversible integer-to-integer mapping of N-point orthonormal block transforms,” Signal Processing, vol.87, no.5, pp.950–969, 2007.

    Article  MATH  Google Scholar 

  28. J. Li, “Reversible FFT and MDCT via matrix lifting,” in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. iv-173–iv-176, May 2004.

    Google Scholar 

  29. L.Z. Cheng, G.J. Zhong, and J.S. Luo, “New family of lapped biorthogonal transform via lifting steps,” IEE Proceedings -Vision, Image and Signal Processing, Vol. 149, no. 2, pp. 91–96, April 2002.

    Article  Google Scholar 

  30. P. Hao and Q. Shi, “Matrix Factorizations for Reversible Integer Mapping,” IEEE Transactions on Signal Processing, vol.42, no.10, pp. 2314–2324,October 2001.

    MathSciNet  Google Scholar 

  31. K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications. New York: Academic, 1990.

    MATH  Google Scholar 

  32. B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform Coding Techniques for Lossy Hyperspectral Data Compression,” IEEE Geosciense and Remote Sensing, vol. 45, no. 5, pp. 1408–1421, May 2007.

    Article  Google Scholar 

  33. Z. Xiong, O. Guleryuz, and M. T. Orchard, “A DCT-based embedded image coder”. IEEE Signal Processing Letters, vol. 3, pp. 289–290, 1996.

    Article  Google Scholar 

  34. X. Tang and W. A. Pearlman, “Three-Dimensional Wavelet-Based Compression of Hyperspectral Images,” in Hyperspectral Data Compression, pp.273–308, 2006.

    Google Scholar 

  35. Jiaji Wu, Zhensen Wu, Chengke Wu, “Lossly to lossless compression of hyperspectral images using three-dimensional set partitioning algorithm,” Optical Engineering, vol.45, no.2, pp.1–8, February 2006.

    Google Scholar 

  36. Information Technology—JPEG 2000 Image Coding System—Part 2: Extensions, ISO/IEC 15444–2, 2004.

    Google Scholar 

  37. http://aviris.jpl.nasa.gov/html/aviris.freedata.html

  38. http://qccpack.sourceforge.net/

  39. E. Christophe, C. Mailhes and P. Duhamel, “Hyperspectral image compression: adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding”, IEEE Transactions on Image Processing, vol.17, no.12, pp.2334–2346, 2008.

    Article  MathSciNet  Google Scholar 

  40. Lei Wang, Jiaji Wu, Licheng Jiao, Li Zhang and Guangming Shi, “Lossy to Lossless Image Compression Based on Reversible Integer DCT. IEEE International Conference on Image Processing 2008 (ICIP2008), pp.1037–1040, 2008.

    Google Scholar 

  41. J. Mielikainen, “Lossless compression of hyperspectral images using lookup tables,” IEEE Signal Processing Letters, vol.13, no.3, pp.157–160, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaji Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, J., Wang, L., Fang, Y., Jiao, L.C. (2012). Multiplierless Reversible Integer TDLT/KLT for Lossy-to-Lossless Hyperspectral Image Compression. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics