Advertisement

Quality Issues for Compression of Hyperspectral Imagery Through Spectrally Adaptive DPCM

Chapter

Abstract

To meet quality issues of hyperspectral imaging, differential pulse code modulation (DPCM) is usually employed for either lossless or near-lossless data compression, i.e., the decompressed data have a user-defined maximum absolute error, being zero in the lossless case. Lossless compression thoroughly preserves the information of the data but allows a moderate decrement in transmission bit rate. Lossless compression ratios attained even by the most advanced schemes are not very high and usually lower than four. If strictly lossless techniques are not employed, a certain amount of information of the data will be lost. However, such an information may be partly due to random fluctuations of the instrumental noise. The rationale that compression-induced distortion is more tolerable, i.e., less harmful, in those bands, in which the noise is higher, and vice-versa, constitutes the virtually lossless paradigm.

Keywords

Mean Square Error Minimum Mean Square Error Hyperspectral Data Lossless Compression Arithmetic Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrardo, A., Alparone, L., Bartolini, F.: Encoding-interleaved hierarchical interpolation for lossless image compression. Signal Processing 56(2), 321–328 (1997)MATHCrossRefGoogle Scholar
  2. 2.
    Aiazzi, B., Alba, P., Alparone, L., Baronti, S.: Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction. IEEE Trans. Geosci. Remote Sensing 37(5), 2287–2294 (1999)CrossRefGoogle Scholar
  3. 3.
    Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Marcoionni, P., Pippi, I., Selva, M.: Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers. Annals of Geophysics 41(1), 1–9 (2006)Google Scholar
  4. 4.
    Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Pippi, I.: Estimating noise and information of multispectral imagery. J. Optical Engin. 41(3), 656–668 (2002)CrossRefGoogle Scholar
  5. 5.
    Aiazzi, B., Alparone, L., Baronti, S.: A reduced Laplacian pyramid for lossless and progressive image communication. IEEE Trans. Commun. 44(1), 18–22 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless compression of 3-D optical data. IEEE Trans. Geosci. Remote Sensing 39(11), 2547–2557 (2001)CrossRefGoogle Scholar
  7. 7.
    Aiazzi, B., Alparone, L., Baronti, S.: Context modeling for near-lossless image coding. IEEE Signal Processing Lett. 9(3), 77–80 (2002)CrossRefGoogle Scholar
  8. 8.
    Aiazzi, B., Alparone, L., Baronti, S.: Fuzzy logic-based matching pursuits for lossless predictive coding of still images. IEEE Trans. Fuzzy Systems 10(4), 473–483 (2002)CrossRefGoogle Scholar
  9. 9.
    Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless image compression by relaxation-labelled prediction. Signal Processing 82(11), 1619–1631 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Aiazzi, B., Alparone, L., Baronti, S.: Lossless compression of hyperspectral images using multiband lookup tables. IEEE Signal Processing Lett. 16(6), 481–484 (2009)CrossRefGoogle Scholar
  11. 11.
    Aiazzi, B., Alparone, L., Baronti, S., Lastri, C.: Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 4(4), 532–536 (2007)CrossRefGoogle Scholar
  12. 12.
    Aiazzi, B., Alparone, L., Baronti, S., Lotti, F.: Lossless image compression by quantization feedback in a content-driven enhanced Laplacian pyramid. IEEE Trans. Image Processing 6(6), 831–843 (1997)CrossRefGoogle Scholar
  13. 13.
    Aiazzi, B., Alparone, L., Baronti, S., Santurri, L.: Near-lossless compression of multi/hyperspectral images based on a fuzzy-matching-pursuits interband prediction. In: S.B. Serpico (ed.) Image and Signal Processing for Remote Sensing VII, vol. 4541, pp. 252–263 (2002)Google Scholar
  14. 14.
    Alecu, A., Munteanu, A., Cornelis, J., Dewitte, S., Schelkens, P.: On the optimality of embedded deadzone scalar-quantizers for wavelet-based L-infinite-constrained image coding. IEEE Signal Processing Lett. 11(3), 367–370 (2004)CrossRefGoogle Scholar
  15. 15.
    Alecu, A., Munteanu, A., Cornelis, J., Dewitte, S., Schelkens, P.: Wavelet-based scalable L-infinity-oriented compression. IEEE Trans Image Processing 15(9), 2499–2512 (2006)CrossRefGoogle Scholar
  16. 16.
    Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition–Parts I and II. IEEE Trans. Syst. Man Cybern.–B 29(6), 778–800 (1999)Google Scholar
  17. 17.
    Benazza-Benyahia, A., Pesquet, J.C., Hamdi, M.: Vector-lifting schemes for lossless coding and progressive archival of multispectral images. IEEE Trans. Geosci. Remote Sensing 40(9), 2011–2024 (2002)CrossRefGoogle Scholar
  18. 18.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)Google Scholar
  19. 19.
    Carpentieri, B., Weinberger, M.J., Seroussi, G.: Lossless compression of continuous-tone images. Proc. of the IEEE 88(11), 1797–1809 (2000)CrossRefGoogle Scholar
  20. 20.
    Chang, C.I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inform. Theory 46(5), 1927–1932 (2000)MATHCrossRefGoogle Scholar
  21. 21.
    Deng, G., Ye, H., Cahill, L.W.: Adaptive combination of linear predictors for lossless image compression. IEE Proc.-Sci. Meas. Technol. 147(6), 414–419 (2000)CrossRefGoogle Scholar
  22. 22.
    Golchin, F., Paliwal, K.K.: Classified adaptive prediction and entropy coding for lossless coding of images. In: Proc. IEEE Int. Conf. on Image Processing, vol. III/III, pp. 110–113 (1997)Google Scholar
  23. 23.
    Huang, B., Sriraja, Y.: Lossless compression of hyperspectral imagery via lookup tables with predictor selection. In: L. Bruzzone (ed.) Proc. of SPIE, Image and Signal Processing for Remote Sensing XII, vol. 6365, pp. 63650L.1–63650L.8 (2006)Google Scholar
  24. 24.
    Jayant, N.S., Noll, P.: Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice Hall, Englewood Cliffs, NJ (1984)Google Scholar
  25. 25.
    Ke, L., Marcellin, M.W.: Near-lossless image compression: minimum entropy, constrained-error DPCM. IEEE Trans. Image Processing 7(2), 225–228 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Keshava, N.: Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sensing 42(7), 1552–1565 (2004)CrossRefGoogle Scholar
  27. 27.
    Kiely, A.B., Klimesh, M.A.: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 47(8), 2672–2678 (2009)CrossRefGoogle Scholar
  28. 28.
    Klimesh, M.: Low-complexity adaptive lossless compression of hyperspectral imagery. In: Satellite Data Compression, Communication and Archiving II, Proc. SPIE, vol. 6300 pp. 63000N.1–63000N.9 (2006)Google Scholar
  29. 29.
    Lastri, C., Aiazzi, B., Alparone, L., Baronti, S.: Virtually lossless compression of astrophysical images. EURASIP Journal on Applied Signal Processing 2005(15), 2521–2535 (2005)MATHCrossRefGoogle Scholar
  30. 30.
    Magli, E., Olmo, G., Quacchio, E.: Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC. IEEE Geosci. Remote Sensing Lett. 1(1), 21–25 (2004)CrossRefGoogle Scholar
  31. 31.
    Matsuda, I., Mori, H., Itoh, S.: Lossless coding of still images using minimum-rate predictors. In: Proc. IEEE Int. Conf. on Image Processing, vol. I/III, pp. 132–135 (2000)Google Scholar
  32. 32.
    Mielikainen, J.: Lossless compression of hyperspectral images using lookup tables. IEEE Signal Proc. Lett. 13(3), 157–160 (2006)CrossRefGoogle Scholar
  33. 33.
    Mielikainen, J., Toivanen, P.: Clustered DPCM for the lossless compression of hyperspectral images. IEEE Trans. Geosci. Remote Sensing 41(12), 2943–2946 (2003)CrossRefGoogle Scholar
  34. 34.
    Mielikainen, J., Toivanen, P., Kaarna, A.: Linear prediction in lossless compression of hyperspectral images. J. Optical Engin. 42(4), 1013–1017 (2003)CrossRefGoogle Scholar
  35. 35.
    Penna, B., Tillo, T., Magli, E., Olmo, G.: Progressive 3-D coding of hyperspectral images based on JPEG 2000. IEEE Geosci. Remote Sensing Lett. 3(1), 125–129 (2006)CrossRefGoogle Scholar
  36. 36.
    Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Compression Standard. Van Nostrand Reinhold, New York (1993)Google Scholar
  37. 37.
    Ramabadran, T.V., Chen, K.: The use of contextual information in the reversible compression of medical images. IEEE Trans. Medical Imaging 11(2), 185–195 (1992)CrossRefGoogle Scholar
  38. 38.
    Rao, A.K., Bhargava, S.: Multispectral data compression using bidirectional interband prediction. IEEE Trans. Geosci. Remote Sensing 34(2), 385–397 (1996)CrossRefGoogle Scholar
  39. 39.
    Rao, K.K., Hwang, J.J.: Techniques and Standards for Image, Video, and Audio Coding. Prentice Hall, Engl. Cliffs, NJ (1996)Google Scholar
  40. 40.
    Reichel, J., Menegaz, G., Nadenau, M.J., Kunt, M.: Integer wavelet transform for embedded lossy to lossless image compression. IEEE Trans. Image Processing 10(3), 383–392 (2001)MATHCrossRefGoogle Scholar
  41. 41.
    Rice, R.F., Plaunt, J.R.: Adaptive variable-length coding for efficient compression of spacecraft television data. IEEE Trans. Commun. Technol. COM-19(6), 889–897 (1971)Google Scholar
  42. 42.
    Rizzo, F., Carpentieri, B., Motta, G., Storer, J.A.: Low-complexity lossless compression of hyperspectral imagery via linear prediction. IEEE Signal Processing Lett. 12(2), 138–141 (2005)CrossRefGoogle Scholar
  43. 43.
    Roger, R.E., Cavenor, M.C.: Lossless compression of AVIRIS images. IEEE Trans. Image Processing 5(5), 713–719 (1996)CrossRefGoogle Scholar
  44. 44.
    Said, A., Pearlman, W.A.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Processing 5(9), 1303–1310 (1996)CrossRefGoogle Scholar
  45. 45.
    Tate, S.R.: Band ordering in lossless compression of multispectral images. IEEE Trans. Comput. 46(4), 477–483 (1997)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Taubman, D.S., Marcellin, M.W.: JPEG2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, Dordrecht, The Netherlands (2001)Google Scholar
  47. 47.
    Wang, J., Zhang, K., Tang, S.: Spectral and spatial decorrelation of Landsat-TM data for lossless compression. IEEE Trans. Geosci. Remote Sensing 33(5), 1277–1285 (1995)CrossRefGoogle Scholar
  48. 48.
    Weinberger, M.J., Rissanen, J.J., Arps, R.B.: Applications of universal context modeling to lossless compression of gray-scale images. IEEE Trans. Image Processing 5(4), 575–586 (1996)CrossRefGoogle Scholar
  49. 49.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Processing 9(8), 1309–1324 (2000)CrossRefGoogle Scholar
  50. 50.
    Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30, 520–540 (1987)CrossRefGoogle Scholar
  51. 51.
    Wu, X., Bao, P.: L constrained high-fidelity image compression via adaptive context modeling. IEEE Trans. Image Processing 9(4), 536–542 (2000)MATHCrossRefGoogle Scholar
  52. 52.
    Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 45(4), 437–444 (1997)CrossRefGoogle Scholar
  53. 53.
    Wu, X., Memon, N.: Context-based lossless interband compression–Extending CALIC. IEEE Trans. Image Processing 9(6), 994–1001 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bruno Aiazzi
    • 1
  • Luciano Alparone
    • 2
  • Stefano Baronti
    • 1
  1. 1.IFAC-CNRSesto F.noItaly
  2. 2.Department of Electronics & TelecommunicationsUniversity of FlorenceFlorenceItaly

Personalised recommendations