Skip to main content

Applications of Multiscale Overcomplete Wavelet-Based Representations in Intravascular Ultrasound (IVUS) Images

  • Chapter
  • First Online:
Ultrasound Imaging

Abstract

The importance of atherosclerotic disease in coronary artery has been a subject of study for many researchers in the past decade. In brief, the aim is to understand progression of such a disease, detect plaques at risks (vulnerable plaques), and treat them selectively to prevent mortality and immobility. Consequently, several imaging modalities have been developed and among them intravascular ultrasound (IVUS) has been of particular interest since it provides useful information about tissues microstructures and images with sufficient penetration as well as resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katouzian A, Sathyanarayana S, Baseri B, Konofagou EE, Carlier SG (2008) Challenges in atherosclerotic plaque characterization with intravascular ultrasound (IVUS): from data collection to classification. IEEE Trans Inf Technol Biomed 12(3):315–327

    Article  PubMed  Google Scholar 

  2. Sonka M, Zhang X, Siebes M, Bissing MS, DeJong SC, Collins SM, McKay CR (1995) Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans Med Imaging 14(4):719–732

    Article  CAS  PubMed  Google Scholar 

  3. Shekhar R, Cothren RM, Vince DG, Chandra S, Thomas JD, Cornhill JF (1999) Three-dimensional segmentation of luminal and adventitial borders is serial intravascular ultrasound images. Comput Med Imaging Graph 23:299–309

    Article  CAS  PubMed  Google Scholar 

  4. Plissiti M, Fotidadis D, Michalis L, Bozios G (2000) An automated methos for lumen and media–adventitia border detection in a sequence of IVUS frames. IEEE Trans Inf Technol Biomed 19(10):996–1011

    Google Scholar 

  5. Cardinal MR, Meunier J, Soulez G, Maurice RL, Therasse E, Cloutier G (2006) Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distribution. IEEE Trans Med Imaging 25(5):590–601

    Article  PubMed  Google Scholar 

  6. Unal G, Bucher S, Carlier S, Slabaugh G, Fang T, Tanaka K (2008) Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Trans Inf Technol Biomed 12(3):335–347

    Article  PubMed  Google Scholar 

  7. Gil D, Radeva P, Saludes J (2000) Segmentation of artery wall in coronary IVUS images: a probabilistic approach. In: 15th International Conference on Pattern Recognition, Barcelona

    Google Scholar 

  8. Gil D, Hernandez A, Carol A, Rodríguez O, Radeva P (2005) A deterministic-static adventitia detection in IVUS images. LNCS-3504, FIMH, pp 65–74

    Google Scholar 

  9. Taki A, Najafi Z, Roodaki A, Setarehdan SK, Zoroofi RA, Konig A, Navab N (2008) Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int J CARS 3:347–354

    Article  Google Scholar 

  10. Hibi K, Takagi A, Zhang X, Teo TT, Boneau HN, Yock PG, Fitzgerald PJ (2000) Feasibility of a novel blood reduction algorithm to enhance reproducibility of ultra-high-frequency intravascular ultrasound images. Circulation 102(14):1657–1663

    Article  CAS  PubMed  Google Scholar 

  11. Balocco S, Basset O, Cachard C, Delachartre P (2003) Spatial aniosotropic diffusion and local time correlation applied to segmentation of vessels in ultrasound image sequences. IEEE Symp Ultrasonics 2:1549–1552

    Google Scholar 

  12. Katouzian A, Angelini E, Lorsakul A, Sturm B, Laine A (2009) Lumen border detection of intravascular ultrasound via denoising of directional wavelet representations. In: Functional Imaging and Modeling of Heart

    Google Scholar 

  13. Rotger D, Radeva P, Nofrerias EF, Mauri J (2007) Blood detection in IVUS images for 3D volume of lumen changes measurement due to different drugs administration. In: CAIP LNCS 4673

    Google Scholar 

  14. Katouzian A, Selver MA, Angelini E, Sturm B, Laine A (2009) Classification of blood regions in IVUS images using three dimensional brushlet-derived features. In: EMBC

    Google Scholar 

  15. De Valois R, De Valois K (1988) Spatial vision. Oxford University Press, New York

    Google Scholar 

  16. Beck J, Sutter A, Ivry R (1987) Spatial frequency channels Vnd perceptual grouping in texture segregation. Comput vision Graph Image Process 37:299–325

    Article  Google Scholar 

  17. Katouzian A, Angelini E, Lorsakul A, Sturm B, Laine A (2009) Lumen border detection of intravascular ultrasound via denoising of directional wavelet representations. In: Functional Imaging and Modeling of Heart, Nice, 2009

    Google Scholar 

  18. Katouzian A, Selver MA, Angelini E, Sturm B, Laine A (2009) Classification of blood regions in IVUS images using three dimensional brushlet-derived features. In: European Molecular Biology Conference

    Google Scholar 

  19. Angelini E, Laine A, Takuma S, Holmes J Homma S (2001) LV volume quantification via spatio-temporal analysis of real-time 3D echocardiography. IEEE Trans Med Imaging 20(6):57–469

    Article  Google Scholar 

  20. Meyer F, Coifman RR (1997) Brushlets: a tool for directional image analysis and image compression. Appl Comput Harmon Anal 4:147–187

    Article  Google Scholar 

  21. Yilmaz O, Rickard S (2004) Blind separation of speech mixtures via time-frequency masking, IEEE Trans Signal Process 52(7):1830–1847

    Article  Google Scholar 

  22. Ausher P, Weiss G, Wickerhauser MV (1992) Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. In: Chui CK (ed) Wavelets – a tutorial in theory and application, vol 2. Academic, San Diego, pp 237–256

    Google Scholar 

  23. Angelini E, Laine A, Takuma S, Holmes J, Homma S (2001) LV volume quantification via spatio-temporal analysis of real-time 3D echocardiography. IEEE Trans Med Imaging 20(6):457–469

    Article  CAS  PubMed  Google Scholar 

  24. Duan Q, Angelini ED, Laine AF (2009) Surface function actives. J Vis Commun Image R 20:478–490

    Article  Google Scholar 

  25. Ruiz GM, Rivera M, Kakadiaris IA (2008) A probabilistic segmentation method for the identification of luminal borders in intravascular ultrasound images. IEEE Conf Comput Vis Pattern Recognit

    Google Scholar 

  26. Tobis JM, Mallery J, Mahon D, Lehmann K, Zalesky P, Griffith J, Gessert J, Moriuchi M, McRae M, Dwyer ML (1991) Intravascular ultrasound imaging of human coronary arteries in vivo. Analysis of tissue characterization with comparison to in vitro histological specimens. Circulation 83:913–926

    CAS  Google Scholar 

  27. Gad K, Leon MB (1991) Characterization of atherosclerotic lesions by intravascular ultrasound: possible role in unstable coronary syndromes and in interventional therapeutics procedure. Am J Cardiol 68:85B–91B

    Article  Google Scholar 

  28. Zhang X, McKay CR, Sonka M (1998) Tissue characterization in intravascular ultrasound images. IEEE Trans Med Imaging 17:(6)889–899

    Google Scholar 

  29. Caballero KL, Pujol O, Barajas J, Mauri J, Radeva P (2006) Assessing in-vivo IVUS tissue classification accuracy between normalized image reconstruction and RF analysis. Med Image Comput Comput Assist Interv 82–89

    Google Scholar 

  30. Escalera S, Pujol O, Mauri J, Radeva P (2009) Intravascular ultrasound tissue characterization with sub-class error-correcting output codes. J Signal Process Syst 55(1–3):35–47

    Article  Google Scholar 

  31. Taki A, Roodaki A, Pauly O, Setarehdan S, Unal G, Navab N (2009) A new method for characterization of coronary plaque composition via IVUS images, IEEE Int Symp Biomed Imaging: from nano to macro (ISBI 2009)

    Google Scholar 

  32. Laine AF, Fan J (1996) Frame representation for texture segmentation. IEEE Trans Image Process 5(5):771–780

    Article  CAS  PubMed  Google Scholar 

  33. Hiro T, Leung CY, De Guzman S, Caiozzo VJ, Fervid AR, Karimi H, Helfant RH, Tobis JM (1997) Are soft echoes really soft? Intravascular ultrasound assessment of mechanical properties in human atherosclerotic tissue. Am Heart J 133:1–7

    Article  CAS  PubMed  Google Scholar 

  34. Jeremias A, Kolz ML, Ikonen TS, Gummert JF, Oshima A, Hayase M, Honda Y, Komiyama N, Berry GJ, Morris RE, Yock PG, Fitzgerald PJ (1999) Feasibility of in vivo intravascular ultrasound tissue characterization in the detection of early vascular transplant rejection. Circulation 100:2127–2130

    Article  CAS  PubMed  Google Scholar 

  35. Katouzian A, Baseri B, Konofagou E, Laine AF (2008) Texture-driven coronary artery plaque characterization using wavelet packet signatures proceeding of 5th IEEE International Symposium on Biomedical Imaging (ISBI): from nano to macro

    Google Scholar 

  36. Nair A, Kuban BD, Tuzcu M, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206

    Article  PubMed  Google Scholar 

  37. Katouzian A, Sathyanarayana S, Li W, Thomas T, Carlier SG Challenges in Tissue Characterization from Backscattered Intravascular Ultrasound Signals. In: IEEE Proceedings of SPIE, San Diego, Feb 2007

    Google Scholar 

  38. Rioul O (1993) A discrete-time multiresolution theory. IEEE Trans Signal Process 41(8):2591–2606

    Article  Google Scholar 

  39. Mallat SG (1989) A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  40. Daubechies I (1992) Ten lectures on wavelets. Society for industrial and applied mathematics, Philadelphia

    Book  Google Scholar 

  41. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560

    Article  CAS  PubMed  Google Scholar 

  42. Coifman RR, Wickerhauser MV (1992) Entropy-based algorithms for best basis selection. IEEE Trans Inf Theory 38(2):713–718

    Article  Google Scholar 

  43. Coifman RR, Meyer Y (1989) Orthonormal wave packet bases. Yale Univiversity

    Google Scholar 

  44. Nair A, Kuban BD, Obuchowski N, Vince DG (2001) Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound Med Biol 27(10):1319–1331

    Article  CAS  PubMed  Google Scholar 

  45. Kawasaki M, Takatsu H, Noda T et al (2002) Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol 38(2):486–492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Katouzian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katouzian, A., Angelini, E., Sturm, B., Konofagou, E., Carlier, S.G., Laine, A.F. (2012). Applications of Multiscale Overcomplete Wavelet-Based Representations in Intravascular Ultrasound (IVUS) Images. In: Sanches, J., Laine, A., Suri, J. (eds) Ultrasound Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1180-2_14

Download citation

Publish with us

Policies and ethics