Skip to main content

RF Ultrasound Estimation from B-Mode Images

  • Chapter
  • First Online:
Book cover Ultrasound Imaging

Abstract

This chapter describes a method to estimate/recover the ultrasound RF envelope signal from the observed B-mode images by taking into account the main operations usually performed by the ultrasound scanner in the acquisition process.The proposed method assumes a Rayleigh distribution for the RF signal and a nonlinear logarithmic law, depending on unknown parameters, to model the compression procedure performed by the scanner used to improve the visualization of the data.The goal of the proposed method is to estimate the parameters of the compression law, depending on the specific brightness and contrast adjustments performed by the operator during the acquisition process, in order to revert the process.The method provides an accurate observation model which allows to design robust and effective despeckling ∕ reconstruction methods for morphological and textural analysis of Ultrasound data to be used in Computer Aided Dagnosis (CAD) applications.Numerous simulations with synthetic and real data, acquired under different conditions and from different tissues, show the robustness of the method and the validity of the adopted observation model to describe the acquisition process implemented in the conventional ultrasound scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shankar PM et al (2003) Classification of breast masses in ultrasonic B scans using Nakagami and K distributions. Phys Med Biol 48(14):2229–2240

    Article  CAS  PubMed  Google Scholar 

  2. Aysal T, Barner K (2007) Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images. IEEE Trans Med Imag 26(5):712–727

    Article  Google Scholar 

  3. Mougiakakou S, Golemati S, Gousias I, Nicolaides AN, Nikita KS (2007) Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws’ texture and neural networks. Ultrasound Med Biol 33(1):26–36

    Article  PubMed  Google Scholar 

  4. Goodman JW (2007) Speckle phenomena in optics. Roberts and Company, Atlanta

    Google Scholar 

  5. Wagner RF, Smith SW, Sandrik JM, Lopez H (1983) Statistics of speckle in ultrasound B-scans. IEEE Trans Son Ultrason 30(3):156–163

    Article  Google Scholar 

  6. Michailovich O, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectrics Freq Contr 53(1):64–78

    Article  Google Scholar 

  7. Dutt V, Greenleaf JF (1996) Adaptive speckle reduction filter for log-compressed b-scan images. IEEE Trans Med Imag 15(6):802–813

    Article  CAS  Google Scholar 

  8. Prager RW, Gee AH, Treece GM, Berman LH (2003) Decompression and speckle detection for ultrasound images using the homodyned k-distribution. Pattern Recogn Lett 24(4–5):705–713

    Article  Google Scholar 

  9. Cramblitt RM, Parker KJ (1999) Generation of non-Rayleigh speckle distributions using marked regularity models. IEEE Trans Ultrason Ferroelectrics Freq Contr 46(4):867–874

    Article  CAS  Google Scholar 

  10. Kim H, Varghese T (2007) Attenuation estimation using spectral cross-correlation. IEEE Trans Ultrason Ferroelectrics Freq Contr 54(3):510–519

    Article  Google Scholar 

  11. Dantas R, Costa E (2007) Ultrasound speckle reduction using modified Gabor filters. IEEE Trans Ultrason Ferroelectrics Freq Contr 54(3):530–538

    Article  Google Scholar 

  12. Orfanidis SJ (1996) Optimum signal processing. An introduction. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  13. Szabo TL (2004) Diagnostic ultrasound imaging: inside out. Academic, New York

    Google Scholar 

  14. Moon TK, Stirling WC (2000) Mathematical methods and algorithms for signal processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  15. Kaplan D, Ma Q (1994) On the statistical characteristics of the log-compressed rayleigh signals: theoretical formulation and experimental results. J Acoust Soc Am 95:1396–1400

    Article  Google Scholar 

  16. Loupas T, McDicken W, Allan P (1989) An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans Circ Syst 36:129–135

    Article  Google Scholar 

  17. Gary N, Hendee B (2004) Ultrasonic diagnostic imaging system with automatically controlled contrast and brightness. Acoust Soc Am J 116:2725–2725

    Google Scholar 

  18. Lee D, Kim YS, Ra JB (2006) Automatic time gain compensation and dynamic range control in ultrasound imaging systems, vol 6147. SPIE, CA

    Google Scholar 

  19. Sathyanarayana S (2008) Systems and methods for automatic time-gain compensation in an ultrasound imaging system. Acoust Soc Am J 123(5):2475

    Article  Google Scholar 

  20. Crawford DC, Bell DS, Bamber JC (1993) Compensation for the signal processing characteristics of ultrasound b-mode scanners in adaptive speckle reduction. Ultrasound Med Biol 19(6):469–85

    Article  CAS  PubMed  Google Scholar 

  21. Sanches J, Marques J (2003) Compensation of log-compressed images for 3-d ultrasound. Ultrasound Med Biol 29(2):247–261

    Article  Google Scholar 

  22. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York; Ninth dover printing, Tenth gpo printing edition

    Google Scholar 

  23. Eltoft T (2006) Modeling the amplitude statistics of ultrasonic images. IEEE Trans Med Imag 25(2):229–240; Comparative Study.

    Google Scholar 

  24. Sehgal C (1993) Quantitative relationship between tissue composition and scattering of ultrasound. Acoust Soc Am J 94:1944–1952

    Article  CAS  Google Scholar 

  25. Abbot J, Thurstone F (1979) Acoustic speckle: theory and experimental analysis. Ultrasound Imag 1(4):303–324

    Article  Google Scholar 

  26. Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  Google Scholar 

  27. Tao Z, Tagare H, Beaty J (2006) Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans Med Imag 25(11):1483–1491

    Article  Google Scholar 

  28. Aja-Fernandez S, Vegas G, Martinez D, Palencia C (2010) On the influence of interpolation on probabilistic models for ultrasonic images. In: ISBI’10: Proceedings of the 2010 IEEE international conference on Biomedical imaging, Piscataway, NJ, 2010. IEEE Press, New York, pp 292–295

    Google Scholar 

  29. Paskas M (2009) Two approaches for log-compression parameter estimation: comparative study. Serbian J Electr Eng 6(3):419–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Seabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Seabra, J., Sanches, J.M. (2012). RF Ultrasound Estimation from B-Mode Images. In: Sanches, J., Laine, A., Suri, J. (eds) Ultrasound Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1180-2_1

Download citation

Publish with us

Policies and ethics