Skip to main content

Emerging Technologies to Increase the Bioavailability of Poorly Water-Soluble Drugs

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 3))

Abstract

The need for novel formulation and process-based techniques to enhance aqueous solubility has increased substantially in recent years. This is primarily due to the limitations of traditional techniques such as physical and chemical stability of the drug substance or the need for toxic solvents that some techniques require. Alternative solubility-enhancement techniques have emerged in recent years to mitigate issues such as these. The purpose of this chapter is to describe emerging technologies for solubility enhancement, allowing the reader to gain an understanding of their utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    Article  PubMed  CAS  Google Scholar 

  • Alade SL, Brown RE, Paquet A Jr (1986) Polysorbate 80 and E-Ferol Toxicity. Pediatrics 77:593

    PubMed  CAS  Google Scholar 

  • Alakhov V, Pietrzynski G, Patel K, Kabanov A, Bromberg L, Hatton TA (2004) Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate. J Pharm Pharmacol 56:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 16:3–27

    Article  CAS  Google Scholar 

  • Andersson J, Rosenholm J, Areva S, Lindén M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica ­matrices. Chem Mater 16:4160–4167

    Article  CAS  Google Scholar 

  • Batrakova E, Dorodnych T, Klinskii E, Kliushnenkova E, Shemchukova O, Goncharova O, Arjakov S, Alakhov V, Kabanov A (1996) Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 74:1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Batrakova E, Li S, Miller D, Kabanov A (1999) Pluronic P85 increases permeability of a broad spectrum of drugs in polarized bbmec and caco-2 cell monolayers. Pharm Res 16:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  • Behrens I, Pena AIV, Alonso MJ, Kissel T (2002) Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 19:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Benahmed A, Ranger M, Leroux J-C (2001) Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide). Pharm Res 18:323–328

    Article  PubMed  CAS  Google Scholar 

  • Bernardos A, Aznar E, Coll C, Martínez-Mañez R, Barat JM, Marcos MD, Sancenón F, Benito A, Soto J (2008) Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J Control Release 131:181–189

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117

    Article  PubMed  CAS  Google Scholar 

  • Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128:99–112

    Article  PubMed  CAS  Google Scholar 

  • Capone C, Di Landro L, Inzoli F, Penco M, Sartore L (2007) Thermal and mechanical degradation during polymer extrusion processing. Polym Eng Sci 47:1813–1819

    Article  CAS  Google Scholar 

  • Cavallari C, Rodriguez L, Albertini B, Passerini N, Rosetti F, Fini A (2005) Thermal and fractal analysis of diclofenac/Gelucire 50/13 microparticles obtained by ultrasound-assisted atomization. J Pharm Sci 94:1124–1134

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60:1281–1302

    Article  PubMed  CAS  Google Scholar 

  • Crowley MM, Zhang F, Koleng JJ, McGinity JW (2002) Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 23:4241–4248

    Article  PubMed  CAS  Google Scholar 

  • Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33:909–926

    Article  PubMed  CAS  Google Scholar 

  • Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684

    Article  PubMed  CAS  Google Scholar 

  • Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  • Di Tommaso C, Como C, Gurny R, Möller M (2010) Investigations on the lyophilisation of MPEG-hexPLA micelle based pharmaceutical formulations. Eur J Pharm Sci 40:38–47

    Article  PubMed  CAS  Google Scholar 

  • DiNunzio JC, Brough C, Miller DA, Brown A, Williams III RO, McGinity JW (2008) Fusion processing of itraconazole and griseofulvin solid dipsersions by a novel high energy manufacturing technology – KinetiSol® Dispersing. Abstract and Poster Presentation. Proceedings of the American Association of Pharmaceutical Scientists, November 16–20, 2008

    Google Scholar 

  • DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO III, McGinity JW (2010a) Fusion production of solid dispersions containing a heat sensitive active ingredient by hot melt extrusion and kinetisol® dispersing. Eur J Pharm Biopharm 74:340–351

    Article  PubMed  CAS  Google Scholar 

  • DiNunzio JC, Brough C, Miller DA, Williams RO III, McGinity JW (2010b) Applications of kinetisol® dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci 40:179–187

    Article  PubMed  CAS  Google Scholar 

  • DiNunzio JC, Brough C, Miller DA, Williams RO III, McGinity JW (2010c) Fusion processing of itraconazole solid dispersions by kinetisol® dispersing: a comparative study to hot melt extrusion. J Pharm Sci 99:1239–1253

    Article  PubMed  CAS  Google Scholar 

  • DiNunzio JC, Hughey JR, Brough C, Miller DA, Williams RO III, McGinity JW (2010d) Production of advanced solid dispersions for enhanced bioavailability of itraconazole using kinetisol® dispersing. Drug Dev Ind Pharm 36:1064–1078

    Article  PubMed  CAS  Google Scholar 

  • Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160

    Article  CAS  Google Scholar 

  • El’darov EG, Mamedov FV, Gol’dberg VM, Zaikov GE (1996) A kinetic model of polymer degradation during extrusion. Polym Degrad Stab 51:271–279

    Article  Google Scholar 

  • Fini A, Fernández-Hervás MJ, Holgado MA, Rodriguez L, Cavallari C, Passerini N, Caputo O (1997) Fractal analysis of β-cyclodextrin–indomethacin particles compacted by ultrasound. J Pharm Sci 86:1303–1309

    Article  PubMed  CAS  Google Scholar 

  • Fini A, Holgado MA, Rodriguez L, Cavallari C (2002a) Ultrasound-compacted indomethacin/polyvinylpyrrolidone systems: Effect of compaction process on particle morphology and ­dissolution behavior. J Pharm Sci 91:1880–1890

    Article  PubMed  CAS  Google Scholar 

  • Fini A, Rodriguez L, Cavallari C, Albertini B, Passerini N (2002b) Ultrasound-compacted and spray-congealed indomethacin/polyethyleneglycol systems. Int J Pharm 247:11–22

    Article  PubMed  CAS  Google Scholar 

  • Follonier N, Doelker E, Cole ET (1994) Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained relesae capsules containing high loadings of freely soluble drugs. Drug Dev Ind Pharm 20:1323–1339

    Article  CAS  Google Scholar 

  • Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    Article  PubMed  CAS  Google Scholar 

  • Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–158

    Article  PubMed  CAS  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T (2005) NK105, a paclitaxel-incorporating micellar nanoparticle ­formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92:1240–1246

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC (2002) Disordered drug delivery: destiny, dynamics and the Deborah number. J Pharm Pharmacol 54:737–746

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12:799–806

    Article  PubMed  CAS  Google Scholar 

  • Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, Salmi T, Murzin DY, Laitinen L, Kaukonen AM, Hirvonen J, Lehto VP (2007) Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm 331:133–138

    Article  PubMed  CAS  Google Scholar 

  • Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, Williams RO III, McGinity JW (2010) Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and kinetisol® dispersing. AAPS PharmSciTech 11:760–774

    Article  PubMed  CAS  Google Scholar 

  • Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K (2005) Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release 101:59–68

    Article  PubMed  CAS  Google Scholar 

  • Ignatious F, Baldoni JM (2001) Electrospun pharmaceutical compositions. World Patent 0,154,667

    Google Scholar 

  • Ignatious F, Sun L, Lee C-P, Baldoni J (2010) Electrospun nanofibers in oral drug delivery. Pharm Res 27:576–588

    Article  PubMed  CAS  Google Scholar 

  • Jones M-C, Leroux J-C (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  PubMed  CAS  Google Scholar 

  • Jonkman-De Vries JD, Flora KP, Bult A, Beijnen JH (1996) Pharmaceutical development of (investigational) anticancer agents for parenteral use-a review. Drug Dev Ind Pharm 22:475–494

    Article  CAS  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212

    Article  PubMed  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  PubMed  CAS  Google Scholar 

  • Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    Article  CAS  Google Scholar 

  • Kim S, Kim JY, Huh KM, Acharya G, Park K (2008) Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel. J Control Release 132:222–229

    Article  PubMed  CAS  Google Scholar 

  • Kozlov MY, Melik-Nubarov NS, Batrakova EV, Kabanov AV (2000) Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33:3305–3313

    Article  CAS  Google Scholar 

  • Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968

    Article  CAS  Google Scholar 

  • Kumar A, Ganjyal GM, Jones DD, Hanna MA (2008) Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors. J Food Eng 84:441–448

    Article  Google Scholar 

  • Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Begell House, Redding, CT

    Google Scholar 

  • Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309

    Article  CAS  Google Scholar 

  • Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116

    Article  CAS  Google Scholar 

  • Lavasanifar A, Samuel J, Kwon GS (2001) Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate -aspartamide) by a solvent evaporation method: effect on the ­solubilization and haemolytic activity of amphotericin B. J Control Release 77:155–160

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K (2006) Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules 8:202–208

    Article  CAS  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  PubMed  CAS  Google Scholar 

  • Lin W-J, Juang L-W, Lin C-C (2003) Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res 20:668–673

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  PubMed  CAS  Google Scholar 

  • Mellaerts R, Aerts CA, Humbeeck JV, Augustijns P, den Mooter GV, Martens JA (2007) Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun 1375–1377

    Google Scholar 

  • Mellaerts R, Jammaer JAG, Van Speybroeck M, Chen H, Humbeeck JV, Augustijns P, Van den Mooter G, Martens JA (2008a) Physical state of poorly water soluble therapeutic molecules loaded into sba-15 ordered mesoporous silica carriers: a case study with itraconazole and ­ibuprofen. Langmuir 24:8651–8659

    Article  PubMed  CAS  Google Scholar 

  • Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, Van den Mooter G, Augustijns P, Martens JA (2008b) Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm 69:223–230

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  • Mondon K, Zeisser-Labouèbe M, Gurny R, Möller M (2011) Novel cyclosporin a formulations using mpeg-hexyl-substituted polylactide micelles: a suitability study. Eur J Pharm Biopharm 77:56–65

    Article  PubMed  CAS  Google Scholar 

  • Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2002) MCM-41 organic ­modification as drug delivery rate regulator. Chem Mater 15:500–503

    Article  CAS  Google Scholar 

  • Murphy DK, Rabel S (2008) Thermal analysis and calorimetric methods for the characterization of new crystal forms. In: Adeyeye MC (ed) Preformulation in solid dosage form development, vol 178. Informa Healthcare, New York, pp 279–322

    Google Scholar 

  • Peltier S, Oger J-M, Lagarce F, Couet W, Benoît J-P (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Qu F, Zhu G, Huang S, Li S, Qiu S (2006) Effective controlled release of captopril by silylation of mesoporous MCM-41. Chemphyschem 7:400–406

    Article  PubMed  CAS  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progr Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216

    Article  CAS  Google Scholar 

  • Repka MA, Gerding TG, Repka SL, McGinity JW (1999) Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm 25:625–633

    Article  PubMed  CAS  Google Scholar 

  • Repka MA, Prodduturi S, Stodghill SP (2003) Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev Ind Pharm 29:757–765

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez L, Cini M, Cavallari C, Passerini N, Saettone MF, Fini A, Caputo O (1998) Evaluation of theophylline tablets compacted by means of a novel ultrasound-assisted apparatus. Int J Pharm 170:201–208

    Article  CAS  Google Scholar 

  • Rodriguez L, Passerini N, Cavallari C, Cini M, Sancin P, Fini A (1999) Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. Int J Pharm 183:133–143

    Article  PubMed  CAS  Google Scholar 

  • Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  • Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of Pharmaceutical Excipients. Pharmaceutical Press, Washington, DC

    Google Scholar 

  • Salonen J, Laine E, Niinisto L (2002) Thermal carbonization of porous silicon surface by acetylene. J Appl Phys 91:456–461

    Article  CAS  Google Scholar 

  • Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J Control Release 108:362–374

    Article  PubMed  CAS  Google Scholar 

  • Sancin P, Caputo O, Cavallari C, Passerini N, Rodriguez L, Cini M, Fini A (1999) Effects of ultrasound-assisted compaction on Ketoprofen/Eudragit® S100 Mixtures. Eur J Pharm Sci 7:207–213

    Article  PubMed  CAS  Google Scholar 

  • Sant VP, Smith D, Leroux J-C (2004) Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release 97:301–312

    Article  PubMed  CAS  Google Scholar 

  • Sant VP, Smith D, Leroux J-C (2005) Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 104:289–300

    Article  PubMed  CAS  Google Scholar 

  • Satturwar P, Eddine MN, Ravenelle F, Leroux J-C (2007) pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. Eur J Pharm Biopharm 65:379–387

    Article  PubMed  CAS  Google Scholar 

  • Savić R, Eisenberg A, Maysinger D (2006) Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle–cell interactions. J Drug Target 14:343–355

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi K, Obi N (1961) Studies on absorption of eutectic mixture. I. Comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull (Tokyo) 9:866–872

    CAS  Google Scholar 

  • Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103:4113–4121

    Article  CAS  Google Scholar 

  • Song SW, Hidajat K, Kawi S (2005) Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix  −  drug interactions. Langmuir 21:9568–9575

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Xu Y, Wu D, Sun Y (2006) A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem 179:1513–1520

    Article  CAS  Google Scholar 

  • Tang Q, Chen Y, Chen J, Li J, Xu Y, Wu D, Sun Y (2010) Drug delivery from hydrophobic-modified mesoporous silicas: control via modification level and site-selective modification. J Solid State Chem 183:76–83

    Article  CAS  Google Scholar 

  • Teng Y, Morrison ME, Munk P, Webber SE, Prochazka K (1998) Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules 31:3578–3587

    Article  CAS  Google Scholar 

  • Tian M, Qin A, Ramireddy C, Webber SE, Munk P, Tuzar Z, Prochazka K (1993) Hybridization of block copolymer micelles. Langmuir 9:1741–1748

    Article  CAS  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    Article  PubMed  CAS  Google Scholar 

  • Torchilin V (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  PubMed  CAS  Google Scholar 

  • Trimaille T, Mondon K, Gurny R, Möller M (2006) Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides). Int J Pharm 319:147–154

    Article  PubMed  CAS  Google Scholar 

  • Trimaille T, Gurny R, Möller M (2007) Poly(hexyl-substituted lactides): novel injectable ­hydrophobic drug delivery systems. J Biomed Mater Res A 80A:55–65

    Article  CAS  Google Scholar 

  • Ukmar T, Planinšek O (2010) Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharm 60:373–385

    Article  PubMed  CAS  Google Scholar 

  • Vallet-Regí M (2006) Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 12:5934–5943

    Article  PubMed  CAS  Google Scholar 

  • Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311

    Article  CAS  Google Scholar 

  • van Stam J, Creutz S, De Schryver FC, Jerome R (2000) Tuning of the exchange dynamics of unimers between block copolymer micelles with temperature, cosolvents, and cosurfactants. Macromolecules 33:6388–6395

    Article  CAS  Google Scholar 

  • Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME (2003a) Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 20:810–817

    Article  PubMed  CAS  Google Scholar 

  • Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003b) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360

    Article  PubMed  CAS  Google Scholar 

  • Verreck G, Decorte A, Heymansa K, Adriaensen J, Liu D, Tomasko D, Arien A, Peeters J, Van den Mooter G, Brewster ME (2006) Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm 327:45–50

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Otuonye AN, Blair EA, Denton K, Tao Z, Asefa T (2009) Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. J Solid State Chem 182:1649–1660

    Article  CAS  Google Scholar 

  • Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F (2008) Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem 181:2837–2844

    Article  CAS  Google Scholar 

  • Yalkowsky SH (1981) Techniques of solubilization of drugs. Marcel Dekker, New York

    Google Scholar 

  • Yang Q, Wang S, Fan P, Wang L, Di Y, Lin K, Xiao F-S (2005) pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater 17:5999–6003

    Article  CAS  Google Scholar 

  • Yasugi K, Nagasaki Y, Kato M, Kataoka K (1999) Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(,-lactide) block copolymers as potential drug carrier. J Control Release 62:89–100

    Article  PubMed  CAS  Google Scholar 

  • Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh SWA (2009a) Oral fast-­dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 20:055104

    Article  PubMed  CAS  Google Scholar 

  • Yu D-G, Zhang X-F, Shen X-X, Brandford-White C, Zhu L-M (2009b) Ultrafine ibuprofen-loaded polyvinylpyrrolidone fiber mats using electrospinning. Polym Int 58:1010–1013

    Article  CAS  Google Scholar 

  • Yu D-G, Branford-White C, White K, Li X-L, Zhu L-M (2010a) Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen. AAPS PharmSciTech 11:809–817

    Article  PubMed  CAS  Google Scholar 

  • Yu D-G, Gao L-D, White K, Branford-White C, Lu W-Y, Zhu L-M (2010b) Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm Res 27:2466–2477

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW (2002) Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate. Int J Pharm 241:301–310

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Mehta KA, McGinity JW (2006) Influence of plasticizer level on the drug release from sustained release film coated and hot-melt extruded dosage forms. Pharm Dev Technol 11:285–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin R. Hughey .

Editor information

Editors and Affiliations

Method Capsule 1

Method Capsule 1

13.1.1 Preparation of Solid Dispersions: KinetiSol® Dispersing

Based on the method reported by DiNunzio et al. (2010b)

Objective

  • To rapidly prepare plasticizer-free solid dispersions containing Eudragit® L100-55

Equipment and Reagents

  • Eudragit® L100-55

  • Itraconazole

  • Liquid nitrogen

  • KinetiSol® Dispersing Compounder

  • Impact mill

  • 60-mesh screen

Method

  • Input an ejection temperature of 158 °C and a rotational speed of 3,000 rpm into the control module.

  • Mix a 1:2 blend of itraconazole:Eudragit® L100-55 in a polyethylene bag for 1-min.

  • Charge the blended material into the processing chamber.

  • Pre-cool steel plates with liquid nitrogen.

  • Start the compounding process.

  • Using the data-acquisition system, monitor temperature and rotational speeds.

  • After material is discharged, quench between chilled plates.

  • Grind the brittle material in an impact mill and pass through a 60-mesh screen.

Results

  • The temperature of the blend reached 158°C in 14.1 s with exposure to temperatures greater than 100°C for only 2 s, resulting in no chemical degradation of Eudragit® L100-55.

  • X-ray powder diffraction patterns indicated that the composition was amorphous.

  • Differential scanning calorimetry thermograms showed the presence of a single-phase system with no endothermic events.

  • The plasticizer-free composition exhibited a high degree of physical stability due to its high glass transition temperature.

13.1.2 Method Capsule 2Preparation of Solid Dispersions: Electrostatic Spinning

Based on the method reported by Verreck et al. (2003a)

Objective

  • To prepare solid dispersions of itraconazole by electrostatic spinning

Equipment and Reagents

  • Hypromellose

  • Itraconazole

  • Ethanol

  • Methylene chloride

  • Electrostatic spinner

  • Turbula mixer

  • Cryogenic mill

  • Liquid nitrogen

Method

  • Prepare physical blends containing 20% w/w or 40% w/w itraconazole by ­mixing in a Turbula mixer for 10 min

  • Prepare a 12% w/w solution of the itraconazole:hypromellose blend in a mixture of ethanol and methylene chloride (40:60 ethanol:methylene chloride w/w)

  • Place the solution into the spinneret and apply a high voltage (16–24 kV)

  • Optional: Mill the resulting fibers by cryogenic grinding

Results

  • SEM analysis demonstrated that drug concentration and processing voltage can significantly impact fiber size and shape.

  • Differential scanning calorimetry thermograms showed that compositions ­containing 20% (w/w) and 40% (w/w) itraconazole were amorphous.

  • Differential scanning calorimetry thermograms indicated that the milling ­process facilitated recrystallization of amorphous itraconazole.

  • Dissolution rates of itraconazole were found to be highly dependent on the drug:polymer ratio, fiber diameter, and presentation used (nonwoven fabrics, milling, etc.).

13.1.3 Method Capsule 3Preparation of Solid Dispersions: Ultrasonic-Assisted Compaction

Based on the method reported by Fini et al. (2002b)

Objective

  • To prepare dispersions of indomethacin by ultrasonic-assisted compaction

Equipment and Reagents

  • Indomethacin

  • Polyethylene glycol 4000, 5500, or 6000

  • Magnesium stearate

  • Talc

  • Ultrasonic-assisted tabletting machine

  • Turbula mixer

Method

  • Mix composition containing 10% indomethacin, 88% polyethylene glycol (4000–6000), 1% magnesium stearate, and 1% talc (w/w) in a Turbula mixer for 15 min.

  • Transfer 1 g of the blend to the ultrasonic-assisted tableting machine equipped with a 25-mm punch.

  • Subject the blend to a frequency of 25 kHz, allowing the polyethylene glycol to become molten.

  • Mill the solidified wafer and sieve such that a particle size range of 75–150 μm is obtained.

Results

  • Differential scanning calorimetry thermograms did not exhibit an endothermic peak associated with indomethacin.

  • X-ray diffractograms of the sonicated composition showed significantly decreased crystallinity in comparison to material that was not sonicated.

  • The dissolution rate of indomethacin was significantly enhanced by ultrasonic compaction.

  • Dissolution rates of indomethacin were found to be highly dependent on energy input with higher levels approaching that of a true solid dispersion.

13.1.4 Method Capsule 4Preparation of Solid Dispersions: Ultrasonic-Assisted Congealing

Based on the method reported by Cavallari et al. (2005)

Objective

  • To prepare multiparticulate dispersions of diclofenac by ultrasonic-assisted compaction

Equipment and Reagents

  • Diclofenac

  • Gelucire 50/13

  • Ultrasonic-assisted congealing apparatus

  • Heat source

Method

  • Heat Gelucire 50/13 to 10°C above its melting point.

  • Add diclofenace (10% w/w) to the Gelucire 50/13 and stir to complete dissolution.

  • Transfer the molten mixture to the thermostated reservoir preset to 60°C.

  • Atomize the molten mass into small droplets by bringing the mass into contact with the sonotrode.

  • Allow the atomized small droplets to fall freely and solidify at room temperature.

  • Collect the microparticles and store in a vacuum desiccator at room temperature.

Results

  • Scanning electron microscopy showed that microparticles were spherical or elliptical in shape and nonaggregated.

  • Sieve analysis demonstrated that the predominant size range was 150–350 μm.

  • Differential scanning calorimetry thermograms did not exhibit an endothermic peak associated with diclofenac at loadings up to 20% (w/w).

  • X-ray diffraction diffractograms exhibited a small degree of crystallinity that can be attributed to diclofenac, indicating that the microparticles were not completely amorphous.

  • Dissolution rates of diclofenac from microparticles were significantly enhanced in comparison to that of the physical mixture.

13.1.5 Method Capsule 5Preparation of Solid Dispersions: Polymeric Micelles

Based on the method reported by Lee et al. (2006)

Objective

  • To prepare polymeric micelles containing paclitaxel suitable for oral administration

Equipment and Reagents

  • Paclitaxel

  • PEG-b-P(VBODENA) copolymer

  • Acetonitrile, DMF, or DMAc

  • Dialysis membrane with 1,000-Da molecular weight cutoff

Method

  • Dissolve 10 mg of block copolymer in 2 mL of acetonitrile, DMF, or DMAc

  • Add paclitaxel to the block copolymer solution at paclitaxel:copolymer ratios ranging from 0.25:1 to 0.6:1

  • Stir the solution for 6 hours at room temperature

  • Dialyze using a membrane against 6 L of distilled water for 24 h

  • Filter through 0.45 μm membrane filters

  • Lyophilize the filtered material containing micelles

Results

  • Loading analysis demonstrated that paclitaxel loading capacity was enhanced with increasing block length of P(VBODENA).

  • Lyophilized micelles could be dissolved in water to achieve a concentration that is five orders of magnitude greater than that of paclitaxel in water.

  • Differential scanning calorimetry thermograms of lyophilized micelles did not exhibit an endothermic event related to paclitaxel, indicating a molecular dispersion.

  • Dynamic light-scattering experiments showed that micelles were between about 105 and 120 nm which was maintained in solution for more than 4 weeks.

  • Cytotoxicity analysis demonstrated that paclitaxel micelles were as much as two orders of magnitude more effective than controls.

  • Bioavailability of paclitaxel was determined to be approximately twofold higher than that of the marketed formulation, Taxol®.

13.1.6 Method Capsule 6Preparation of Solid Dispersions: Mesoporous Silica

Based on the method reported by Mellaerts et al. (2008b)

Objective

  • To prepare mesoporous silica loaded with itraconazole

Equipment and Reagents

  • Itraconazole

  • Ordered mesoporous silica (OMS)

  • Methylene chloride

  • Rotary mixer

Method

  • Prepare a 5 mg/mL solution of itraconazole in methylene chloride.

  • Add OMS at a OMS:Itraconazole ratio of 75:25 and agitate for 24 h with a rotary mixer.

  • Remove methylene chloride by evaporation and dry powder overnight at 35°C.

  • Heat mixture to 100°C for 5 min under vacuum and at 40°C for 48 h to ensure complete removal of methylene chloride.

Results

  • Differential scanning calorimetry thermograms did not exhibit glass transition or endothermic events, indicating that itraconazole was molecularly ­dispersed within the OMS.

  • BET analysis showed that the surface area of OMS decreased from 844 to 355 m2/g after loading with itraconazole.

  • Dissolution studies demonstrated that release rates of itraconazole from OMS were significantly faster than crystalline itraconazole.

  • Bioavailability of itraconazole-loaded OMS was found to be similar to that of the marketed product, Sporanox®.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Hughey, J.R., McGinity, J.W. (2012). Emerging Technologies to Increase the Bioavailability of Poorly Water-Soluble Drugs. In: Williams III, R., Watts, A., Miller, D. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1144-4_13

Download citation

Publish with us

Policies and ethics