Skip to main content

Pharmaceutical Cryogenic Technologies

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 3))

Abstract

Poor bioavailability associated with poorly water-soluble compounds remains a challenging issue in drug development. Particle engineering may be used to improve the physicochemical properties of poorly water-soluble compounds, thereby enhancing the bioavailability. Cryogenic technologies, including spray freeze drying (SFD), spray freezing into liquid (SFL), and thin film freezing (TFF), are “bottom-up” precipitation processes to generate amorphous nanostructured aggregates with significantly enlarged surface area, higher dissolution rates, and supersaturation, via rapidly inducing nucleation followed by particle growth arrest through stabilization via polymers and solidification of the solvent. This chapter provides detailed description of each cryogenic process, formulation guidelines, and characterization analyses. Finally, examples of cryogenically engineered drug compositions with improved in vitro and in vivo macroscopic performance are provided to illustrate the potential benefits of cryogenic technologies, especially TFF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amidon GL, Lennernas H et al (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    PubMed  CAS  Google Scholar 

  • Badawya SIF, Ghorabb MM et al (1996) Characterization and bioavailability of danazol-hydroxypropyl β-cyclodextrin coprecipitates. Int J Pharm 128(1–2):45–54

    Google Scholar 

  • Bakatselou V, Oppenheim RC et al (1991) Solubilization and wetting effects of bile salts on the dissolution of steroids. Pharm Res 8(12):1461–1469

    PubMed  CAS  Google Scholar 

  • Barron MK, Young TJ et al (2003) Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery. AAPS PharmSciTech 4:1–13

    Google Scholar 

  • Benson SW, Ellis DA (1948) Surface areas of proteins; surface areas and heats of absorption. J Am Chem Soc 70(11):3563–3569

    PubMed  CAS  Google Scholar 

  • Bertilsson L, Tomson T (1986) Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clin Pharmacokinet 11(3):177–198

    PubMed  CAS  Google Scholar 

  • Betageri GV, Makarla KR (1995) Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm 126(1–2):155–160

    CAS  Google Scholar 

  • Boeh-Ocansey O (1983) A study of the freeze drying of some liquid foods in vacuo and at atmospheric pressure. Dry Technol 2:389–405

    Google Scholar 

  • Borm P, Klaessig FC et al (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32

    PubMed  CAS  Google Scholar 

  • Brown SC, Claybourn M et al (2007) Optimizing raman spectroscopy to quantify polymorphic forms of a drug molecule. Am Pharm Rev 10(58):60–67

    Google Scholar 

  • Brunauer S, Emmett P et al (1938) Adsorption of gases in multimolecular layer. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  • Burkart GJ, Smaldone GC et al (2003) Lung deposition and pharmacokinetics of cyclosporine after aerosolization in lung transplant patients. Pharm Res 20(2):252–256

    PubMed  Google Scholar 

  • Carli F, Motta A (1984) Particle size and surface area distributions of pharmaceutical powders by microcomputerized mercury porosimetry. J Pharm Sci 73(2):197–203

    PubMed  CAS  Google Scholar 

  • Clas SD, Dalton CR et al (1999) Differential scanning calorimetry: applications in drug development. Pharm Sci Technolo Today 2(8):311–320

    PubMed  CAS  Google Scholar 

  • Conventional, U. P (2000) The United States pharmacopoeia. The United States Pharmacopoeia Conventional, Rockville, MD, p 8

    Google Scholar 

  • Costantino HR, Curley JG et al (1998) Water sorption behaviour of lyophilised protein-sugar systems and implications for solid-state interactions. Int J Pharm 166:211–221

    CAS  Google Scholar 

  • Costantino HR, Firouzabadian L et al (2000) Protein spray-freeze drying. Effect of atomization conditions on particle size and stability. Pharm Res 17(11):1374–1383

    PubMed  CAS  Google Scholar 

  • Costantino HR, Firouzabadian L et al (2002) Protein spray freeze drying. 2. Effect of formulation variables on particle size and stability. J Pharm Sci 91(2):388–395

    PubMed  CAS  Google Scholar 

  • Costantino HR, Johnson OL et al (2004) Relationship between encapsulated drug particle size and initial release of recombinant human growth hormone from biodegradable microspheres. J Pharm Sci 93(10):2624–2634

    PubMed  CAS  Google Scholar 

  • Courrier HM, Butz N et al (2002) Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carrier Syst 19(4–5):425–498

    PubMed  CAS  Google Scholar 

  • Davies NM, Feddah MR (2003) A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm 255(1–2):175–187

    PubMed  CAS  Google Scholar 

  • Derle D, Patel J et al (2010) Particle engineering techniques to enhance dissolution of poorly water soluble drugs. Int J Curr Pharm Res 2(1):10–15

    CAS  Google Scholar 

  • DiNunzio JC, Miller DA et al (2008) Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm 5(6):968–980

    PubMed  CAS  Google Scholar 

  • Engstrom J, Tam J et al (2009) Templated open flocs of nanorods for enhanced pulmonary delivery with pressurized metered dose inhalers. Pharm Res 26(1):101–117

    PubMed  CAS  Google Scholar 

  • Engstrom JD, Lai ES et al (2008) Formation of stable submicron protein particles by thin film freezing. Pharm Res 25(6):1334–1346

    PubMed  CAS  Google Scholar 

  • Engstrom JD, Simpson DT et al (2007a) Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. Eur J Pharm Biopharm 65(2):163–174

    PubMed  CAS  Google Scholar 

  • Engstrom JD, Simpson DT et al (2007b) Morphology of protein particles produced by spray freezing of concentrated solutions. Eur J Pharm Biopharm 65(2):149–162

    PubMed  CAS  Google Scholar 

  • Eriksson JHC, Hinrichs WLJ et al (2003) Investigations into the Stabilization of Drugs by Sugar Glasses: III. The influence of various high-pH buffers. Pharm Res 20:1437–1443

    PubMed  CAS  Google Scholar 

  • Esclusa-Diaz MT, Guimaraens-Mendez M et al (1996) Characterization and in vitro dissolution behaviour of ketoconazole/β- and 2-hydroxypropyl-β-cyclodextrin inclusion compounds. Int J Pharm 143:203–210

    CAS  Google Scholar 

  • Feeley JC, York P et al (1998) Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisation. Int J Pharm 172:89–96

    CAS  Google Scholar 

  • Forster A, Hempenstall J et al (2001) Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J Pharm Pharmacol 53(3):303–315

    PubMed  CAS  Google Scholar 

  • Franks F (1992) Freeze-drying: from empiricism to predictability. The significance of glass transitions. Dev Biol Stand 74:9–18, discussion 19

    PubMed  CAS  Google Scholar 

  • Fukai J, Ozaki T et al (2000) Numerical simulation of liquid droplet solidification on substrates. J Chem Eng Jpn 33:630–637

    CAS  Google Scholar 

  • Gao L, Zhang D et al (2008) Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–862

    CAS  Google Scholar 

  • Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3:177–210

    Google Scholar 

  • Gosselin PM, Thibert R et al (2003) Polymorphic properties of micronized carbamazepine produced by RESS. Int J Pharm 252(1–2):225–233

    PubMed  CAS  Google Scholar 

  • Grant DJW, Brittian HG (1995) Physical characterisation of pharmaceutical solids. Marcel Dekker, New York

    Google Scholar 

  • Hancock BC (2002) Disordered drug delivery: destiny, dynamics and the Deborah number. J Pharm Pharmacol 54(6):737–746

    PubMed  CAS  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404

    PubMed  CAS  Google Scholar 

  • Hancock BC, Shamblin SL et al (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12(6):799–806

    PubMed  CAS  Google Scholar 

  • Head T, Rydzak J (2003) Chemometric models using diamond attenuated total reflectance IR and Raman spectroscopy to characterize and quantitate polymorphs in pharmaceuticals. Am Pharm Rev 6:78–84

    CAS  Google Scholar 

  • Hickey AJ, Mansour HM et al (2007a) Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci 96(5):1282–1301

    PubMed  CAS  Google Scholar 

  • Hickey MB, Peterson ML et al (2007b) Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 67(1):112–119

    PubMed  CAS  Google Scholar 

  • Hildebrand JH, Scott RL (1950) Solubility of nonelectrolytes. Reinhold, New York, 11–13, 47, 160, 175–197

    Google Scholar 

  • Hintz RJ, Johnson KC (1989) The effect of particle-size distribution on dissolution rate and oral absorption. Int J Pharm 51(1):9–17

    CAS  Google Scholar 

  • Hu J, Johnston K et al (2004a) Rapid release tablet formation of micronized danazol powder produced by spray freezing into liquid (SFL). J Drug Deliv Sci Technol 14(4):305–311

    CAS  Google Scholar 

  • Hu J, Johnston KP et al (2003) Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci 20(3):295–303

    PubMed  CAS  Google Scholar 

  • Hu J, Johnston KP et al (2004b) Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 30(3):233–245

    PubMed  Google Scholar 

  • Hu J, Johnston KP et al (2004c) Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int J Pharm 271(1–2):145–154

    PubMed  CAS  Google Scholar 

  • Hu J, Rogers TL et al (2002) Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology. Pharm Res 19(9):1278–1284

    PubMed  CAS  Google Scholar 

  • Iacono AT, Smaldone GC et al (1997) Dose-related reversal of acute lung rejection by aerosolized cyclosporine. Am J Respir Crit Care Med 155(5):1690–1698

    PubMed  CAS  Google Scholar 

  • Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14(8):907–945

    Google Scholar 

  • Jiang S, Nail SL (1998) Effect of process conditions on recovery of protein activity after freezing and freeze-drying. Eur J Pharm Biopharm 45(3):249–257

    PubMed  CAS  Google Scholar 

  • Johnson KA (1997) Preparation of peptide and protein powders for inhalation. Adv Drug Deliv Rev 26(1):3–15

    PubMed  CAS  Google Scholar 

  • Kapsi SG, Ayres JW (2001) Processing factors in development of solid solution formulation of itraconazole for enhancement of drug dissolution and bioavailability. Int J Pharm 229(1–2):193–203

    PubMed  CAS  Google Scholar 

  • Khougaz K, Clas SD (2000) Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci 89(10):1325–1334

    PubMed  CAS  Google Scholar 

  • Lefort R, De Gusseme A et al (2004) Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball-milling of trehalose. Int J Pharm 280(1–2):209–219

    PubMed  CAS  Google Scholar 

  • Lerk CF, Schoonen AJ et al (1976) Contact angles and wetting of pharmaceutical powders. J Pharm Sci 65(6):843–847

    PubMed  CAS  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60

    PubMed  CAS  Google Scholar 

  • Liu R (2000) Water-insoluble drug formulation. Interpharm Press, Englewood, CO

    Google Scholar 

  • Maa YF, Ameri M et al (2004) Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J Pharm Sci 93(7):1912–1923

    PubMed  CAS  Google Scholar 

  • Maa YF, Nguyen PA et al (1999) Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res 16(2):249–254

    PubMed  CAS  Google Scholar 

  • Maa YF, Prestrelski SJ (2000) Biopharmaceutical powders: particle formation and formulation considerations. Curr Pharm Biotechnol 1(3):283–302

    PubMed  CAS  Google Scholar 

  • Martin A, Swarbrick J et al (1993) Physical pharmacy: physical chemical principles in the pharmaceutical sciences. Lippincott Williams & Wilkins, Philadelphia, PA, 125–142, 212–250, 329–334

    Google Scholar 

  • Matteucci ME, Brettmann BK et al (2007) Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Mol Pharm 4(5):782–793

    PubMed  CAS  Google Scholar 

  • Mawson S, Yates MZ et al (1997) Stabilized polymer microparticles by precipitation with a ­compressed fluid antisolvent.2. Poly(propylene oxide)- and poly(butylene oxide)-based ­copolymers. Langmuir 13(6):1519–1528

    CAS  Google Scholar 

  • Meryman H (1959) Sublimation freeze drying without vacuum. Science 130:628–629

    PubMed  CAS  Google Scholar 

  • Miller DA, McConville JT, et al (2008) Stabilized HME composition with small drug particles. USPTO. USA, Board of the regents, The University of Texas at Austin System. US 2008/0274194 Al

    Google Scholar 

  • Moneghini M, Kikic I et al (2001) Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int J Pharm 222(1):129–138

    PubMed  CAS  Google Scholar 

  • Muller RH, Jacobs C et al (2001) Nanosuspensions as particulate drug formulations in therapy Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47(1): 3–19

    PubMed  CAS  Google Scholar 

  • Mumenthalera M, Leuenberger H (1991) Atmospheric spray-freeze drying: a suitable alternative in freeze-drying technology. Int J Pharm 72(2):97–110

    Google Scholar 

  • Nagapudi K, Jona J (2008) Amorphous active pharmaceutical ingredients in preclinical studies: preparation, characterization, and formulation. Curr Bioact Compd 4:213–224

    CAS  Google Scholar 

  • Newman AW, Byrn SR (2003) Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today 8(19):898–905

    PubMed  CAS  Google Scholar 

  • Ni N, Tesconi M et al (2001) Use of pure t-butanol as a solvent for freeze-drying: a case study. Int J Pharm 226(1–2):39–46

    PubMed  CAS  Google Scholar 

  • Overhoff KA, Engstrom JD et al (2007a) Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 65(1):57–67

    PubMed  CAS  Google Scholar 

  • Overhoff KA, Johnston KP et al (2009) Use of thin film freezing to enable drug delivery: a review. J Drug Deliv Sci Technol 19(2):89–98

    CAS  Google Scholar 

  • Overhoff KA, McConville JT et al (2008) Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. Pharm Res 25(1):167–175

    PubMed  CAS  Google Scholar 

  • Overhoff KA, Moreno A et al (2007b) Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int J Pharm 336(1):122–132

    PubMed  CAS  Google Scholar 

  • Pasandideh-Fard M, Chandra S et al (2002) A three dimensional model of droplet impact and solidification. Int J Heat Mass Transf 45(11):2229–2242

    CAS  Google Scholar 

  • Patravale VB, Date AA et al (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56(7):827–840

    PubMed  CAS  Google Scholar 

  • Peeters J, Neeskens P et al (2002) Characterization of the interaction of 2-hydroxypropyl-beta-cyclodextrin with itraconazole at pH 2, 4, and 7. J Pharm Sci 91(6):1414–1422

    PubMed  CAS  Google Scholar 

  • Poirier JM, Hardy S et al (1997) Plasma itraconazole concentrations in patients with neutropenia: advantages of a divided daily dosage regimen. Ther Drug Monit 19(5):525–529

    PubMed  CAS  Google Scholar 

  • Purvis T, Mattucci ME et al (2007) Rapidly dissolving repaglinide powders produced by the ultra-rapid freezing process. AAPS PharmSciTech 8(3):E58

    PubMed  Google Scholar 

  • Rasenack N, Muller BW (2002) Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res 19(12):1894–1900

    PubMed  CAS  Google Scholar 

  • Rogers TL, Hu J et al (2002a) A novel particle engineering technology: spray-freezing into liquid. Int J Pharm 242(1–2):93–100

    PubMed  CAS  Google Scholar 

  • Rogers TL, Johnston KP et al (2001) Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev Ind Pharm 27(10):1003–1015

    PubMed  CAS  Google Scholar 

  • Rogers TL, Nelsen AC et al (2002b) A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur J Pharm Biopharm 54(3):271–280

    PubMed  CAS  Google Scholar 

  • Rogers TL, Nelsen AC et al (2003a) Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. Pharm Res 20(3):485–493

    PubMed  CAS  Google Scholar 

  • Rogers TL, Overhoff KA et al (2003b) Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. Eur J Pharm Biopharm 55(2):161–172

    PubMed  CAS  Google Scholar 

  • Salekigerhardt A, Ahlneck C et al (1994) Assessment of disorder in crystalline solids. Int J Pharm 101(3):237–247

    CAS  Google Scholar 

  • Sarkari M, Brown J et al (2002) Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm 243(1–2):17–31

    PubMed  CAS  Google Scholar 

  • Sethuraman V, Hickey A (2002) Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. AAPS PharmSciTech 3:E28

    PubMed  Google Scholar 

  • Shah B, Kakumanu VK et al (2006) Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci 95(8):1641–1665

    PubMed  CAS  Google Scholar 

  • Shekunov BY, Chattopadhyay P et al (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24(2):203–227

    PubMed  CAS  Google Scholar 

  • Simonsen L, Clarke MJ et al (1998) Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis 178(1):53–60

    PubMed  CAS  Google Scholar 

  • Sindel U, Zimmermann I (2001) Measurement of interaction forces between individual powder particles using an atomic force microscope. Powder Technol 117:247–254

    CAS  Google Scholar 

  • Sinswat P, Gao X et al (2005) Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. Int J Pharm 302(1–2):113–124

    PubMed  CAS  Google Scholar 

  • Sitte H, Edelmann L et al (1987) Cryofixation without pretreatment at ambient pressure. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 87–113

    Google Scholar 

  • Sobel JD (2000) Practice guidelines for the treatment of fungal infections. For the Mycoses Study Group. Infectious Diseases Society of America. Clin Infect Dis 30(4):652

    PubMed  CAS  Google Scholar 

  • Stephenson GA, Forbes RA et al (2001) Characterization of the solid state: quantitative issues. Adv Drug Deliv Rev 48(1):67–90

    PubMed  CAS  Google Scholar 

  • Stubberud L, Forbes RT (1998) The use of gravimetry for the study of the effect of additives on the moisture induced recrystallization of amorphous lactose. Int J Pharm 163:145–156

    CAS  Google Scholar 

  • Suryanarayan R (1985) Evaluation of two concepts of crystallinity using calcium gluceptate as a model compound. Int J Pharm 24:1–17

    Google Scholar 

  • Suryanarayan R (1995) X-ray powder diffractometry. In: Brittain H (ed) Physical characterization of pharmaceutical solids. Marcel Dekker, New York, pp 187–221

    Google Scholar 

  • Suzuki H, Sunada H (1998) Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem Pharm Bull (Tokyo) 46(3):482–487

    CAS  Google Scholar 

  • Tang X, Pikal MJ (2004) Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21(2):191–200

    PubMed  CAS  Google Scholar 

  • Tesconi MS, Sepassi K et al (1999) Freeze-drying above room temperature. J Pharm Sci 88(5):501–506

    PubMed  CAS  Google Scholar 

  • Traini D, Rogueda P et al (2005) Surface energy and interparticle forces correlations in model pMDI formulations. Pharm Res 22(5):816–825

    PubMed  CAS  Google Scholar 

  • van de Witte P, Dijkstra PJ et al (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Memb Sci 117:1–31

    Google Scholar 

  • Van Drooge DJ, Hinrichs WLJ et al (2004) Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent. J Pharm Sci 93(3):713–725

    PubMed  Google Scholar 

  • Vasanthavada M, Tong WQ et al (2004) Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm Res 21(9):1598–1606

    PubMed  CAS  Google Scholar 

  • Vasanthavada M, Tong WQ et al (2005) Phase behavior of amorphous molecular dispersions II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm Res 22(3):440–448

    PubMed  CAS  Google Scholar 

  • Vaughn JM, McConville JT et al (2006) Single dose and multiple dose studies of itraconazole nanoparticles. Eur J Pharm Biopharm 63(2):95–102

    PubMed  CAS  Google Scholar 

  • Wallemacq PE, Verbeeck RK (2001) Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients. Clin Pharmacokinet 40(4):283–295

    PubMed  CAS  Google Scholar 

  • Ward S, Perkins M et al (2005) Identifying and mapping surface amorphous domains. Pharm Res 22(7):1195–1202

    PubMed  CAS  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Google Scholar 

  • Williams RO, Hu J et al (2003) Process for production of nanoparticles and microparticles by spray freezing into liquid. U. S. Patent 20030041602

    Google Scholar 

  • Yamashita K, Nakate T et al (2003) Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm 267(1–2):79–91

    PubMed  CAS  Google Scholar 

  • Yang W, Johnston KP et al (2010) Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm 75(1):33–41

    PubMed  CAS  Google Scholar 

  • Yang W, Peters JI et al (2008a) Inhaled nanoparticles – a current review. Int J Pharm 356(1–2):239–247

    PubMed  CAS  Google Scholar 

  • Yang W, Tam J et al (2008b) High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm 361(1–2):177–188

    PubMed  CAS  Google Scholar 

  • Yoshioka M, Hancock BC et al (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83(12):1700–1705

    PubMed  CAS  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42

    PubMed  CAS  Google Scholar 

  • Yu Z, Garcia AS et al (2004) Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. Eur J Pharm Biopharm 58(3):529–537

    PubMed  CAS  Google Scholar 

  • Yu Z, Johnston KP et al (2006) Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci 27(1):9–18

    PubMed  CAS  Google Scholar 

  • Zijlstra GS, Rijkeboer M et al (2007) Characterization of a cyclosporine solid dispersion for inhalation. AAPS J 9(2):E190–E199

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Yang, W., Owens, D.E., Williams, R.O. (2012). Pharmaceutical Cryogenic Technologies. In: Williams III, R., Watts, A., Miller, D. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1144-4_11

Download citation

Publish with us

Policies and ethics