Advertisement

State-of-the-Art in Device and Network Element Level Modeling

Chapter
Part of the Optical Networks book series (OPNW)

Abstract

This chapter presents an overview of the most recent modeling and simulation techniques for the analysis and engineering of all the major devices and network elements that comprise a state-of-the-art optical communications system and network. The subject is presented by creating different abstraction levels in device modeling and building on the simulation fundamentals through computer modeling paradigms.

Keywords

Output Port Wavelength Division Multiplex Abstraction Level Fiber Amplifier Optical Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O’Mahony MJ, Politi C, Klonidis D, Nejabati R, Simeonidou D (2006) Future optical networks. IEEE/OSA J Lightwave Technol 24(12):4684–4696Google Scholar
  2. 2.
    Agrawal GP (2005) Lightwave technology: telecommunication systems. Wiley, New YorkGoogle Scholar
  3. 3.
    Piprek J (2009) Optoelectronic devices: advanced simulation and analysis. Springer, HeidelbergGoogle Scholar
  4. 4.
    Bellato L, Polacco B, Pupolin SG, Tamburello M (1979) Problem in the computer simulation of a fiber optic digital transmission system. In: Proceedings of IEEE international conference on communications (ICC) 2, BostonGoogle Scholar
  5. 5.
    Elrefaie AF, Townsend JK, Romeiser MB, Shanmugan KS (1988) Computer simulation of digital lightwave links. IEEE J Select Areas Commun 6(1):94–105Google Scholar
  6. 6.
    Elrefaie AF, Wagner RE, Atlas DA, Daut DG (1988) Chromatic dispersion limitations in coherent lightwave transmission systems. IEEE/OSA J Lightwave Technol 6(5):704–709Google Scholar
  7. 7.
    Lowery A, Lenzman O, Koltchanov I, Moosburger R, Feund R, Richter A, Breuer D, Hamster H (2000) Multiple signal representation simulation of photonic devices, systems and networks. IEEE J Select Topics Quantum Electron 6(2):282–296Google Scholar
  8. 8.
    Lowery AJ (1997) Computer-aided photonics design. IEEE Spectrum 34(4):26–31Google Scholar
  9. 9.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BF (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, CambridgeMATHGoogle Scholar
  10. 10.
    Roudas I, Antoniades N, Richards DH, Wagner RE, Jackel JL, Habiby SF, Stern TE, Elrefaie AF (2000) Wavelength-domain simulation of multiwavelength optical networks. IEEE J Select Topics Quantum Electron 6(2):348–362Google Scholar
  11. 11.
    Yu T, Reimer WM, Grigoryan VS, Menyuk CR (2000) A mean field approach for simulating wavelength-division multiplexed systems. IEEE Photonics Technol Lett 12(4):443–445Google Scholar
  12. 12.
    Gutiérrez-Castrejón R, Duelk M (2006) Using LabVIEW for advanced nonlinear optoelectronic device simulations in high-speed optical communications. Comp Phys Commun 174(6):431–440Google Scholar
  13. 13.
    Duelk M, Gutiérrez-Castrejón R (2008) 4 × 25-Gb/s 40-km PHY at 1310 nm for 100 GbE using SOA-based preamplifier. IEEE/OSA J Lightwave Technol 26(12):1681–1689Google Scholar
  14. 14.
    Agrawal GP (2001) Nonlinear fiber optics, 3rd edn. Academic Press, New YorkGoogle Scholar
  15. 15.
    Olshanky R, Keck DB (1976) Pulse-broadening in graded-index optical fibers. Appl Opt 15(2):483–491Google Scholar
  16. 16.
    Yabre G (2000) Comprehensive theory of dispersion in graded-index optical fibers. IEEE/OSA J Lightwave Technol 18(2):166–177Google Scholar
  17. 17.
    Cárdenas D, Nespola A, Camatel S, Abrate S, Gaudino R (2008) The rebirth of large-core plastic optical fibers: some recent results from the EU project “POF-ALL”. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), San Diego, CAGoogle Scholar
  18. 18.
    Breyer F, Lee SCJ, Randel S, Hanik N. (2007) 1.25 Gbit/s transmission using FFE or DFE equalisation schemes over up to 100 m standard 1 mm step-index polymer optical fibre. In: Proceedings of European conference on optical communications (ECOC), Berlin, GermanyGoogle Scholar
  19. 19.
    Visani D, Okonkwo CM, Loquai S, Yang H, Shi Y, van den Boom HPA, Ditewig AMH, Tartarini G, Schmauss B, Randel S, Koonen AMJ, Tangdiongga E. (2010) Record 5.3 Gbit/s transmission over 50 m 1 mm core diameter graded-index plastic optical fiber. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), San Diego, CAGoogle Scholar
  20. 20.
    Yu J, Jia Z, Huang M, Haris M, Ji PN, Wang T, Chang GK (2009) Applications of 40–Gb/s chirp-managed laser in access and metro networks. IEEE/OSA J Lightwave Technol 27(3):253–265Google Scholar
  21. 21.
    Loquai S, Kruglov R, Ziemann O, Vinogradov J, Bunge C-A (2010) 10 Gbit/s over 25 m Plastic optical fiber as a way for extremely low-cost optical interconnection. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), San Diego, CAGoogle Scholar
  22. 22.
    Van den Boom HPA, Li W, van Bennekom PK, Tafur Monroy I, Khoe G-D (2001) High-capacity transmission over polymer optical fiber. IEEE J Select Topics Quantum Electron 7(3):461–470Google Scholar
  23. 23.
    Haupt M, Fischer UHP (2009) Advanced integrated WDM system for POF communication. In Proc of the SPIE 7234:72340CGoogle Scholar
  24. 24.
    Bartkiv LV, Bobitski YV, Poisel H (2005) Optical demultiplexer using a holographic concave grating for PON-WDM systems. Optica Applicata 35(1):59–66Google Scholar
  25. 25.
    Yabre G (2000) Theoretical investigation on the dispersion of graded-index polymer optical fibers. IEEE/OSA J Lightwave Technol 18(6):869–877Google Scholar
  26. 26.
    Sinkin OV, Holzlöhner R, Zweck J, Menyuk CR (2003) Optimization of the split-step Fourier method in modeling optical fiber communications systems. IEEE/OSA J Lightwave Technol 21(1):61–68Google Scholar
  27. 27.
    Liu X (2009) Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber. Opt Commun 282(7):1435–1439Google Scholar
  28. 28.
    Hult J (2007) A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. IEEE/OSA J Lightwave Technol 25(12):3770–3775Google Scholar
  29. 29.
    Plura M, Kissing J, Gunkel M, Lenge J, Elbers JP, Glingener C, Schulz D, Voges E (2001) Improved split-step method for efficient fibre simulations. Electron Lett 37(5):286–287Google Scholar
  30. 30.
    Kremp T, Freude W (2005) Fast split-step wavelet collocation method for WDM system parameter optimization. IEEE/OSA J Lightwave Technol 23(3):1491–1502Google Scholar
  31. 31.
    Liu X, Lee B (2003) A fast method for nonlinear Schrödinger equation. IEEE Photonics Technol Lett 15(11):1549–1551Google Scholar
  32. 32.
    Golovchenko EA, Pilipetskii AN, Bergano NS, Davidson CR, Khatri FI, Kimball RM, Mazurczyk VJ (2000) Modeling of transoceanic fiber-optic WDM communication systems. IEEE J Select Topics Quantum Electron 6(2):337–346Google Scholar
  33. 33.
    Hui R, Chowdhury D, Newhouse M, O’Sullivan M, Poettcker M (1997) Nonlinear amplification of noise in fibers with dispersion and its impact in optically amplified systems. IEEE Photonics Technol Lett 9(3):392–394Google Scholar
  34. 34.
    Downie JD, Ruffin AB (2003) Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. IEEE/OSA J Lightwave Technol 21(9):1876–1886Google Scholar
  35. 35.
    Cao S, Chen J, Damask JN, Doerr CR, Guiziou L, Harvey G, Hibino Y, Li H, Suzuki S, Wu K-Y, Xie P (2004) Interleaver technology: comparisons and applications requirements. IEEE/OSA J Lightwave Technol 22(1):281–289Google Scholar
  36. 36.
    Tomlinson WJ (2008) Evolution of passive optical component technologies for fiber-optic communication systems. IEEE/OSA J Lightwave Technol 26(9):1046–1063Google Scholar
  37. 37.
    Lenz G, Eggleton BJ, Giles CR, Madsen CK, Slusher RE (1998) Dispersive properties of optical filters for WDM systems. IEEE J Select Topics in Quantum Electron 34(8):1390–1402Google Scholar
  38. 38.
    Smit MK (2005) Progress in AWG design and technology. In: Proceedings of IEEE/LEOS workshop on fibers and optical passive components, Mondello, Italy, pp 26–31Google Scholar
  39. 39.
    Smit MK, Van Dam C (1996) PHASAR-based WDM-devices: principles, design and applications. IEEE J Select Topics Quantum Electron 2(2):236–250Google Scholar
  40. 40.
    Takahashi H, Suzuki S, Nishi I (1994) Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating. IEEE/OSA J Lightwave Technol 12(6):989–995Google Scholar
  41. 41.
    El-Bawab TS (2006) Optical switching. Springer, New YorkGoogle Scholar
  42. 42.
    Lin LY, Goldstein EL (2002) Opportunities and challenges for MEMS in lightwave communications. IEEE J Select Topics Quantum Electron 8(1):163–172Google Scholar
  43. 43.
    Antoniades N, Ellinas G, Homa J, Bala K (2010) ROADM architectures and WSS implementation technologies. In: Krzysztof I (ed) Convergence of mobile and stationary next-generation networks. Wiley, New YorkGoogle Scholar
  44. 44.
    Afonso A, de la Tocnaye JL, Barge M (2006) Dynamic gain and channel equalizers or wavelength blocker using free space: common elements and differences. IEEE/OSA J Lightwave Technol 24(3):1534–1542Google Scholar
  45. 45.
    Liu Y, Chow CW, Kwok CH, Tsang HK, Lin C (2007) Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator. Opt Commun 272(1):87–91Google Scholar
  46. 46.
    Gutiérrez-Castrejón R, Duelk M, Bernasconi P (2006) A versatile modular computational tool for complex optoelectronic integrated circuits simulation. Opt Quantum Electron 38(12–14):1125–1134Google Scholar
  47. 47.
    Wall P, Colbourne P, Reimer C, McLaughlin S (2008) WSS switching engine technologies. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), San Diego, CAGoogle Scholar
  48. 48.
    Tsai J-C, Wu MC (2006) A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis MEMS scanner array. IEEE Photonics Technol Lett 18(13):1439–1441Google Scholar
  49. 49.
    Ramaswami R, Sivarajan KN (2002) Optical networks, a practical perspective. Morgan Kaufmann Publishers, MassachusettsGoogle Scholar
  50. 50.
    Chan WS, Hall KL, Modiano E, Rauschenbach KA (1998) Architectures and technologies for high-speed optical data networks. IEEE/OSA J Lightwave Technol 16(12):2146–2168Google Scholar
  51. 51.
    Stern T, Ellinas G, Bala K (2008) Multiwavelength optical networks: architectures, design and control, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  52. 52.
    Tomkos I, Chowdhury D, Conradi J, Culverhouse D, Ennser K, Giroux C, Hallock B, Kennedy T, Kruse A, Kumar S, Lascar N, Roudas I, Sharma M, Vodhanel RS, Wang C-C (2001) Demonstration of negative dispersion fibers for DWDM metropolitan area networks. IEEE J Select Topics Quantum Electronics 7(3):439–460Google Scholar
  53. 53.
    Corvini PJ, Koch TL (1987) Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers. IEEE/OSA J Lightwave Technol 5(11):1591–1595Google Scholar
  54. 54.
    Habibullah F, Huang W-P (2006) A self-consistent analysis of semiconductor laser rate equations for system simulation purpose. Opt Commun 258(2):230–242Google Scholar
  55. 55.
    Ahmed M, Yamada M (2009) Inducing single-mode oscillation in Fabry–Perot InGaAsP lasers by applying external optical feedback. IET Optoelectron 4(3):133–141Google Scholar
  56. 56.
    McDonald D, O’Dowd RF (1995) Comparison of two- and three-level rate equations in the modeling of quantum-well lasers. IEEE J Select Topics Quantum Electron 31(11):1927–1934Google Scholar
  57. 57.
    Morthier G, Baets R (1999) Introductory physics. In: Guekos G (ed) Photonic devices for telecommunications. Springer, Germany, p 153Google Scholar
  58. 58.
    Tomkos I, Roudas I, Hesse R, Antoniades N, Boskovic A, Vodhanel R (2001) Extraction of laser rate equation parameters for representative simulations of metropolitan-area transmission systems and networks. Opt Commun 194(1–3):109–129Google Scholar
  59. 59.
    Kibar O, Van Blerkom D, Fan C, Marchand PJ, Esener SC (1998) Small-signal-equivalent circuits for a semiconductor laser. Appl Opt 37(26):6136–6139Google Scholar
  60. 60.
    Chen W, Liu S (1996) Circuit model for multi-longitudinal-mode semiconductor laser. IEEE J Select Topics Quantum Electron 32(12):2128–2132Google Scholar
  61. 61.
    Ganesh Madhan M, Vaya PR, Gunasekaran N (1999) Circuit modeling of multimode bistable laser diodes. IEEE Photonics Technol Lett 11(1):27–29Google Scholar
  62. 62.
    Morthier G, Lowery A (1999) Modelling of DFB laser diodes. In: Guekos G (ed) Photonic devices for telecommunications. Springer-Verlag, Germany, p 183Google Scholar
  63. 63.
    Nguyen LVT, Lowery AJ, Gurney PCR, Novak D (1995) A time-domain model for high-speed quantum-well lasers including carrier transport effects. IEEE J Select Topics Quantum Electron 1(2):494–504Google Scholar
  64. 64.
    Li GL, Yu PKL (2003) Optical intensity modulators for digital and analog applications. IEEE/OSA J Lightwave Technol 21(9):2010–2030Google Scholar
  65. 65.
    Cartledge JC, Chrsitensen B (1998) Optimum operating points for electroabsorption modulators in 10 Gb/s transmission systems using nondispersion shifted fiber. IEEE/OSA J Lightwave Technol 16(3):349–356Google Scholar
  66. 66.
    Højfeldt S, Mørk J (2002) Modeling of carrier dynamics in quantum-well electroabsorption modulators. IEEE J Select Topics Quantum Electron 8(6):1265–1276Google Scholar
  67. 67.
    Vukovic A, Bekker EV, Sewell P, Benson TM (2006) Efficient time domain modeling of rib waveguide RF modulators. IEEE/OSA J Lightwave Technol 24(12):5044–5053Google Scholar
  68. 68.
    Winzer PJ, Essiambre R-J (2006) Advanced optical modulation formats. Proceedings of the IEEE 94(5):952–985Google Scholar
  69. 69.
    Seimetz M (2009) High-Order modulation for optical fiber transmission. Springer, GermanyGoogle Scholar
  70. 70.
    Winzer PJ, Pfennigbauer M, Strasser MM, Leeb WR (2001) Optimum filter bandwidths for optically preamplified NRZ receivers. IEEE/OSA J Lightwave Technol 19(9):1263–1273Google Scholar
  71. 71.
    Personick SD (2008) Optical detectors and receivers. IEEE/OSA J Lightwave Technol 26(9):1005–1020Google Scholar
  72. 72.
    Desurvire E (1994) Erbium-doped fiber amplifiers: principles and applications. Wiley, New YorkGoogle Scholar
  73. 73.
    Bromage J (2004) Raman amplification for fiber communications systems. IEEE/OSA J Lightwave Technol 22(1):79–93Google Scholar
  74. 74.
    Islam MN (2002) Raman amplifiers for telecommunications. IEEE J Select Topics Quantum Electron 8(3):548–559Google Scholar
  75. 75.
    Wiesenfeld JM (1996) Gain dynamics and associated nonlinearities in semiconductor optical amplifiers. J High Speed Electron Syst 7(1):179–222Google Scholar
  76. 76.
    Cotter D, Manning RJ, Blow KJ, Ellis AD, Kelly AE, Nesset D, Phillips ID, Poustie AJ, Rogers DC (1999) Nonlinear optics for high-speed digital information processing. Science 286(5444):1523–1528Google Scholar
  77. 77.
    Connelly MJ (2010) Semiconductor optical amplifiers. Springer, GermanyGoogle Scholar
  78. 78.
    Yamamoto Y, Inoue K (2003) Noise in amplifiers. IEEE/OSA J Lightwave Technol 21(11):2895–2915Google Scholar
  79. 79.
    Gutiérrez-Castrejón R, Schares L, Occhi L, Guekos G (2000) Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length. IEEE J Quantum Electron 36(12):1476–1484Google Scholar
  80. 80.
    Spiekman L, Piehler D, Iannone P, Reichmann K, Lee H (2007) Semiconductor optical amplifiers for FTTx. In: Proceedings of IEEE international conference on transparent optical networks (ICTON), Rome, Italy, pp 48–50Google Scholar
  81. 81.
    Pleros N, Zakynthinos P, Poustie A, Tsiokos D, Bakopoulos P, Petrantonakis D, Kanellos GT, Maxwell G, Avramopoulos H (2007) Optical signal processing using integrated multi-element SOA–MZI switch arrays for packet switching. IET Optoelectron 1(3):120–126Google Scholar
  82. 82.
    White I, Penty R, Webster M, Chai YJ, Wonfor A, Shahkooh S (2002) Wavelength switching components for future photonic networks. IEEE Commun Mag 40(9):74–81Google Scholar
  83. 83.
    Gutiérrez-Castrejón R, Duelk M (2006) Uni-directional time-domain bulk SOA simulator considering carrier depletion by amplified spontaneous emission. IEEE J Quantum Electron 42(6):581–588Google Scholar
  84. 84.
    Saleh AAM, Jopson RM, Evankow JD, Aspell J (1990) Modeling of gain in erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 2(10):714–717Google Scholar
  85. 85.
    Giles CR, Desurvire E (1991) Modeling erbium-doped fiber amplifiers. IEEE/OSA J Lightwave Technol 9(2):271–283Google Scholar
  86. 86.
    Wu AWT, Lowery AJ (1998) Efficient multiwavelength dynamic model for erbium-doped fiber amplifier. IEEE J Quantum Electron 34(8):1325–1331Google Scholar
  87. 87.
    Hodgkinson TG (1992) Improved average power analysis technique for erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 4(11):1273–1275Google Scholar
  88. 88.
    Min B, Lee WJ, Park N (2000) Efficient formulation of Raman amplifier propagation equations with average power analysis. IEEE Photonics Technol Lett 12(11):1486–1488Google Scholar
  89. 89.
    Zhu L, Ma Y, Wang G, Xia L, Xie S (2002) General computer model for both erbium-doped fiber amplifier and fiber Raman amplifier. Opt Eng 41(8):1805–1808Google Scholar
  90. 90.
    Liu X (2005) Effective numerical algorithm for fiber amplifiers. Opt Eng 44(3):1–7MATHGoogle Scholar
  91. 91.
    Kidorf H, Rottwitt K, Nissov M, Ma M, Rabarijaona E (1999) Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photonics Technol Lett 11(5):530–532Google Scholar
  92. 92.
    Kalavally V, Premaratne M, Rukhlenko I, Win T, Shum P, Tang M (2009) Novel directions in Raman amplifier research. In: Proceedings of international conference on information, communications and signal processing (ICICSP), Macau, ChinaGoogle Scholar
  93. 93.
    Mork J, Nielsen ML, Berg TW (2003) The dynamics of semiconductor optical amplifiers: modeling and applications. Opt Photonics News 14(7):42–48Google Scholar
  94. 94.
    Maldonado R, Soto Ortiz H, Solís K (2008) Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier. IEEE J Quantum Electron 44(9):850–857Google Scholar
  95. 95.
    Mecozzi A, Mork J (1997) Saturation effects in nondegenerate four-wave mixing between pulses in semiconductor laser amplifiers. IEEE J Select Topics Quantum Electron 3(5):1190–1207Google Scholar
  96. 96.
    Kim Y, Lee H, Kim S, Ko J, Jeong J (1999) Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOAs. IEEE J Select Topics Quantum Electron 5(3):873–879Google Scholar
  97. 97.
    Occhi L, Schares L, Guekos G (2003) Phase modeling based on the alpha-factor in bulk semiconductor optical amplifiers. IEEE J Select Topics Quantum Electron 9(3):788–797Google Scholar
  98. 98.
    Talli G, Adams MJ (2003) Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments. Opt Commun 218(1–3):161–166Google Scholar
  99. 99.
    Gutiérrez-Castrejón R, Duelk M (2007) Modeling and simulation of semiconductor optical amplifier dynamics for telecommunication applications. In: Bianco SJ (ed) Computer physics research trends. Nova Science Publishers, New York, pp 89–124Google Scholar
  100. 100.
    Borri P, Scaffetii S, Mork J, Langbein W, Mecozzi A, Martelli F (1999) Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers. Opt Commun 164(1–3):51–55Google Scholar
  101. 101.
    Morel P, Sharaiha A (2009) Wideband time-domain transfer matrix model equivalent circuit for short pulse propagation in semiconductor optical amplifiers. IEEE J Quantum Electron 45(2):103–116Google Scholar
  102. 102.
    Lowery AJ (1988) New inline wideband dynamic semiconductor laser amplifier model. IEE J Optoelectron 135(3):242–250Google Scholar
  103. 103.
    Cassioli D, Scotti S, Mecozzi A (2000) A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J Quantum Electron 36(9):1072–1080Google Scholar
  104. 104.
    Mathlouthi W, Lemieux P, Salsi M, Vannucci A, Bononi A, Rusch LA (2006) Fast and efficient dynamic WDM semiconductor optical amplifier model. IEEE/OSA J Lightwave Technol 24(11):4353–4436Google Scholar
  105. 105.
    Bogoni A, Potì L, Porzi C, Scaffardi M, Ghelfi P, Ponzini F (2004) Modeling and measurement of noisy SOA dynamics for ultrafast applications. IEEE J Select Topics Quantum Electron 10(1):197–205Google Scholar
  106. 106.
    Rogowski T, Faralli S, Bolognini G, Di Pasquale F, Di Muro R, Nayar B (2007) SOA-based WDM metro ring networks with link control technologies. IEEE Photonics Technol Lett 19(20):1670–1672Google Scholar
  107. 107.
    Iannone P, Reichmann K, Spiekman L (2003) In-service upgrade of an amplified 130-km metro CWDM transmission system using a single LOA with 140-nm bandwidth. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), vol 2. Dallas, TX, pp 548–550Google Scholar
  108. 108.
    Uskov A, Berg TW, Mørk J (2004) Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers. IEEE J Quantum Electron 40(3):306–320Google Scholar
  109. 109.
    Xu Q, Yao M, Dong Y, Cai W, Zhang J (2001) Experimental demonstration of pattern effect compensation using an asymmetrical Mach-Zehnder. IEEE Photonics Technol Lett 13(12):1325–1327Google Scholar
  110. 110.
    Gutiérrez-Castrejón R, Filios A (2006) Pattern-effect reduction using a cross-gain modulated holding beam in semiconductor optical in-line amplifier. IEEE/OSA J Lightwave Technol 24(12):4912–4917Google Scholar
  111. 111.
    Li Z, Dong Y, Mo J, Wang Y, Lu C (2004) 1050-km WDM transmission of 8 × 10.709 Gb/s DPSK signal using cascaded in-line semiconductor optical amplifier. IEEE Photonics Technol Lett 16(7):1760–1762Google Scholar
  112. 112.
    Downie JD, Hurley J, Mauro Y (2008) 10.7 Gb/s uncompensated transmission over a 470 km hybrid fiber link with in-line SOAs using MLSE and duobinary signals. Opt Express 16(20):15759–15764Google Scholar
  113. 113.
    Kim HK, Chandrasekhar S, Srivastava A, Burrus CA, Buhl L (2001) 10 Gbit/s based WDM signal transmission over 500 km of NZDSF using semiconductor optical amplifier as the in-line amplifier. Electron Lett 37(3):185–187Google Scholar
  114. 114.
    Tanaka S, Tomabechi S, Uetake A, Ekawa M, Morito K (2006) Record high saturation output power (+20 dBm) and low NF (6.0 dB) polarisation-insensitive MQW-SOA module. Electron Lett 42(18):1059–1060Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico

Personalised recommendations