Modulation of the Wound Healing Response Through Oxidation Active Materials

Chapter

Abstract

Oxidative stress originally gained attention as key pathological process in a variety of disease states and conditions (e.g., acute lung injury, sepsis, chronic degenerative neurological diseases). Furthermore, it oxidative stress has also been identified as one of the key mechanisms to tissue toxicity brought on by nanomaterials and implant biomaterials. Yet, despite these origins, newer research has started to view oxidative stress and not simply pathology, but as a physiologically relevant signaling system, working in concert with the more traditional cell signaling cascades (e.g., growth factor signaling, cytokine release). As a result, a reinvigoration of research in regenerative medicine has begun looking at oxidative stress as a potential tuning mechanism to enhance the natural wound healing process. In this chapter, a summary of the biological aspects of oxidative stress is presented as well as a current state of the art approaches used in designing biomaterials to actively participate in the oxidative stress signaling.

Keywords

Migration H2O2 Glutathione Superoxide Hydroperoxide 

References

  1. 1.
    Hancock, J.T.: The role of redox mechanisms in cell signalling. Mol. Biotechnol. 43(2), 162–166 (2009)CrossRefGoogle Scholar
  2. 2.
    Muzykantov, V.R.: Delivery of antioxidant enzyme proteins to the lung. Antioxid. Redox Signal. 3(1), 39–62 (2001)CrossRefGoogle Scholar
  3. 3.
    Cataldi, A.: Cell responses to oxidative stressors. Curr. Pharm. Des. 16(12), 1387–1395 (2010)CrossRefGoogle Scholar
  4. 4.
    Ogasawara, M.A., Zhang, H.: Redox regulation and its emerging roles in stem cells and stem-like cancer cells. Antioxid. Redox Signal. 11(5), 1107–1122 (2009)CrossRefGoogle Scholar
  5. 5.
    Sharma, R.K., Zhou, Q., Netland, P.A.: Effect of oxidative preconditioning on neural progenitor cells. Brain Res. 1243, 19–26 (2008)CrossRefGoogle Scholar
  6. 6.
    Smith, J., et al.: Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc. Natl Acad. Sci. USA 97(18), 10032–10037 (2000)CrossRefGoogle Scholar
  7. 7.
    Stanic, B., Katsuyama, M., Miller Jr., F.J.: An oxidized extracellular oxidation-reduction state increases Nox1 expression and proliferation in vascular smooth muscle cells via epidermal growth factor receptor activation. Arterioscler. Thromb. Vasc. Biol. 30, 2234–2241 (2010)CrossRefGoogle Scholar
  8. 8.
    Delles, C., Miller, W.H., Dominiczak, A.F.: targeting reactive oxygen species in hypertension. Antioxid. Redox Signal. 10(6), 1061–1077 (2008)CrossRefGoogle Scholar
  9. 9.
    Heinecke, J.W.: Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141(1), 1–15 (1998)CrossRefGoogle Scholar
  10. 10.
    Wei, Z., et al.: Simulated ischemia in flow-adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circ. Res. 85(8), 682–689 (1999)CrossRefGoogle Scholar
  11. 11.
    Chow, C.W., et al.: Oxidative stress and acute lung injury. Am. J. Respir. Cell Mol. Biol. 29(4), 427–431 (2003)CrossRefGoogle Scholar
  12. 12.
    Kirkham, P.: Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochem. Soc. Trans. 35(Pt 2), 284–287 (2007)Google Scholar
  13. 13.
    Barnham, K.J., Masters, C.L., Bush, A.I.: Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3(3), 205–214 (2004)CrossRefGoogle Scholar
  14. 14.
    Finkel, T., Holbrook, N.J.: Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239–247 (2000)CrossRefGoogle Scholar
  15. 15.
    Jomova, K., Valko, M.: Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3), 65–87 (2011)CrossRefGoogle Scholar
  16. 16.
    Muzykantov, V.R.: Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control. Release 71(1), 1–21 (2001)CrossRefGoogle Scholar
  17. 17.
    Parkhurs, R.M., Skinner, W.A.: Oxidation products of vitamin E and its model 6-hydroxy-2,2,5,7,8-pentamethylchroman.8. oxidation with benzoyl peroxide. J. Organic Chem. 31(4), 1248–51 (1966)CrossRefGoogle Scholar
  18. 18.
    Villano, D., et al.: Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71(1), 230–235 (2007)CrossRefGoogle Scholar
  19. 19.
    Stenesh, J.: Biochemistry, p. xxvii, 568. Plenum, New York (1998)Google Scholar
  20. 20.
    Papp, L.V., et al.: From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal. 9(7), 775–806 (2007)CrossRefGoogle Scholar
  21. 21.
    Lu, J., Holmgren, A.: Selenoproteins. J. Biol. Chem. 284(2), 723–727 (2009)CrossRefGoogle Scholar
  22. 22.
    Manevich, Y., Fisher, A.B.: Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic. Biol. Med. 38(11), 1422–1432 (2005)CrossRefGoogle Scholar
  23. 23.
    Rhee, S.G., Chae, H.Z., Kim, K.: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38(12), 1543–1552 (2005)CrossRefGoogle Scholar
  24. 24.
    Hood*, E., Simone, E., Wattamwar, P.P., Dziubla, T.D., Muzykantov, V.R.: Polymeric Carriers for Antioxidant Enzymes and Small Molecules. Review article. Nanomedicine (Accepted)Google Scholar
  25. 25.
    Muro, S., et al.: Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am. J. Physiol. Cell Physiol. 285(5), C1339–C1347 (2003)Google Scholar
  26. 26.
    Dziubla, T.D., Karim, A., Muzykantov, V.R.: Polymer nanocarriers protecting active enzyme cargo against proteolysis. J. Control. Release 102(2), 427–439 (2005)CrossRefGoogle Scholar
  27. 27.
    Martin, P.: Wound healing–aiming for perfect skin regeneration. Science 276(5309), 75–81 (1997)CrossRefGoogle Scholar
  28. 28.
    Nathan, C.: Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6(3), 173–182 (2006)CrossRefGoogle Scholar
  29. 29.
    Hubner, G., et al.: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8(7), 548–556 (1996)CrossRefGoogle Scholar
  30. 30.
    Lovvorn, H.N., et al.: Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J. Pediatr. Surg. 34(1), 218–223 (1999)CrossRefGoogle Scholar
  31. 31.
    Sen, C.K., Roy, S.: Redox signals in wound healing. Biochimica Et Biophysica Acta-General Subjects 1780(11), 1348–1361 (2008)CrossRefGoogle Scholar
  32. 32.
    Gorlach, A.: Redox regulation of the coagulation cascade. Antioxid. Redox Signal. 7(9–10), 1398–1404 (2005)CrossRefGoogle Scholar
  33. 33.
    Klyubin, I.V., Kirpichnikova, K.M., Gamaley, I.A.: Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol. 70(4), 347–351 (1996)Google Scholar
  34. 34.
    Niethammer, P., et al.: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249), 996–999 (2009)CrossRefGoogle Scholar
  35. 35.
    Hattori, H., et al.: Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc. Natl Acad. Sci. USA 107(8), 3546–3551 (2010)CrossRefGoogle Scholar
  36. 36.
    Nakamura, H., et al.: Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc. Natl Acad. Sci. USA 98(26), 15143–15148 (2001)CrossRefGoogle Scholar
  37. 37.
    Nathan, C.F.: Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest. 80(6), 1550–1560 (1987)CrossRefGoogle Scholar
  38. 38.
    Babior, B.M.: Phagocytes and oxidative stress. Am. J. Med. 109(1), 33–44 (2000)CrossRefGoogle Scholar
  39. 39.
    Baggiolini, M., et al.: Activation of neutrophil leukocytes – chemoattractant receptors and respiratory burst. FASEB J. 7(11), 1004–1010 (1993)Google Scholar
  40. 40.
    Leto, T.L., Geiszt, M.: Role of Nox family NADPH oxidases in host defense. Antioxid. Redox Signal. 8(9–10), 1549–1561 (2006)CrossRefGoogle Scholar
  41. 41.
    Meischl, C., Roos, D.: The molecular basis of chronic granulomatous disease. Springer Semin. Immunopathol. 19(4), 417–434 (1998)CrossRefGoogle Scholar
  42. 42.
    Shi, M.M., et al.: Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunology 97(2), 309–315 (1999)CrossRefGoogle Scholar
  43. 43.
    Shi, M.M., Godleski, J.J., Paulauskis, J.D.: Regulation of macrophage inflammatory protein-1 alpha mRNA by oxidative stress. J. Biol. Chem. 271(10), 5878–5883 (1996)CrossRefGoogle Scholar
  44. 44.
    Marumo, T., et al.: Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappa B and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96(7), 2361–2367 (1997)CrossRefGoogle Scholar
  45. 45.
    Soneja, A., Drews, M., Malinski, T.: Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 57(Suppl), 108–119 (2005)Google Scholar
  46. 46.
    Driscoll, K.E.: TNFalpha and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol. Lett. 112–113, 177–183 (2000)CrossRefGoogle Scholar
  47. 47.
    Hong, Y.H., et al.: Hydrogen peroxide-mediated transcriptional induction of macrophage colony-stimulating factor by TGF-beta 1. J. Immunol. 159(5), 2418–2423 (1997)Google Scholar
  48. 48.
    Verhasselt, V., Goldman, M., Willems, F.: Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur. J. Immunol. 28(11), 3886–3890 (1998)CrossRefGoogle Scholar
  49. 49.
    Lee, J.S., et al.: Modulation of monocyte chemokine production and nuclear factor kappa B activity by oxidants. J. Interferon Cytokine Res. 19(7), 761–767 (1999)CrossRefGoogle Scholar
  50. 50.
    Haddad, J.J.: Redox regulation of pro-inflammatory cytokines and I kappa B-alpha/NF-kappa B nuclear translocation and activation (vol 296, pg 847, 2002). Biochem. Biophys. Res. Commun. 301(2), 625–625 (2003)CrossRefGoogle Scholar
  51. 51.
    Bejarano, I., et al.: Hydrogen peroxide increases the phagocytic function of human neutrophils by calcium mobilisation. Mol. Cell. Biochem. 296(1–2), 77–84 (2007)CrossRefGoogle Scholar
  52. 52.
    Winn, J.S., et al.: Hydrogen-peroxide modulation of the respiratory burst of human neutrophils. Biochem. Pharmacol. 41(1), 31–36 (1991)CrossRefGoogle Scholar
  53. 53.
    Krjukov, A.A., et al.: Activation of redox-systems of monocytes by hydrogen peroxide. Biofactors 26(4), 283–292 (2006)CrossRefGoogle Scholar
  54. 54.
    Murphy, J.K., et al.: Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radic. Biol. Med. 18(1), 37–45 (1995)CrossRefGoogle Scholar
  55. 55.
    Seres, T., et al.: The phagocytosis-associated respiratory burst in human monocytes is associated with increased uptake of glutathione. J. Immunol. 165(6), 3333–3340 (2000)Google Scholar
  56. 56.
    Klune, J.R., et al.: HMGB1: Endogenous danger signaling. Mol. Med. 14(7–8), 476–484 (2008)Google Scholar
  57. 57.
    Bianchi, M.E., Manfredi, A.A.: High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 220, 35–46 (2007)CrossRefGoogle Scholar
  58. 58.
    Tang, D., et al.: Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 81(3), 741–747 (2007)CrossRefGoogle Scholar
  59. 59.
    Tsung, A., et al.: HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204(12), 2913–2923 (2007)CrossRefGoogle Scholar
  60. 60.
    Springer, T.A.: Traffic signals for lymphocyte recirculation and leukocyte emigration – the multistep paradigm. Cell 76(2), 301–314 (1994)CrossRefGoogle Scholar
  61. 61.
    Reyes-Reyes, M., et al.: Beta 1 and beta 2 integrins activate different signalling pathways in monocytes. Biochem. J. 363, 273–280 (2002)CrossRefGoogle Scholar
  62. 62.
    Lu, H.F., et al.: Hydrogen peroxide induces LFA-1-dependent neutrophil adherence to cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 278(3), H835–H842 (2000)Google Scholar
  63. 63.
    Blouin, E., Halbwachs-Mecarelli, L., Rieu, P.: Redox regulation of beta 2-integrin CD11b/CD18 activation. Eur. J. Immunol. 29(11), 3419–3431 (1999)CrossRefGoogle Scholar
  64. 64.
    Lu, H.F., Ballantyne, C., Smith, C.W.: LFA-1 (CD11a/CD18) triggers hydrogen peroxide production by canine neutrophils. J. Leukoc. Biol. 68(1), 73–80 (2000)Google Scholar
  65. 65.
    Nathan, C., et al.: Cytokine-induced respiratory burst of human-neutrophils – dependence on extracellular-matrix proteins and Cd11/Cd18 integrins. J. Cell Biol. 109(3), 1341–1349 (1989)CrossRefGoogle Scholar
  66. 66.
    Shappell, S.B., et al.: Mac-1 (Cd11b Cd18) mediates adherence-dependent hydrogen-peroxide production by human and canine neutrophils. J. Immunol. 144(7), 2702–2711 (1990)Google Scholar
  67. 67.
    Hashizume, K., et al.: N-acetyl-L-cysteine suppresses constitutive expression of CD11a/LFA-1 alpha protein in myeloid lineage. Leuk. Res. 26(10), 939–944 (2002)CrossRefGoogle Scholar
  68. 68.
    Fraticelli, A., et al.: Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochimica Et Biophysica Acta-Molecular Cell Research 1310(3), 251–259 (1996)CrossRefGoogle Scholar
  69. 69.
    Cai, H.: Hydrogen peroxide regulation of endothelial function: Origins, mechanisms, and consequences. Cardiovasc. Res. 68(1), 26–36 (2005)CrossRefGoogle Scholar
  70. 70.
    Carnemolla, R., Shuvaev, V.V., Muzykantov, V.R.: Targeting antioxidant and antithrombotic biotherapeutics to endothelium. Semin. Thromb. Hemost. 36(3), 332–342 (2010)CrossRefGoogle Scholar
  71. 71.
    Bradley, J.R., Johnson, D.R., Pober, J.S.: Endothelial activation by hydrogen-peroxide – selective increases of intercellular-adhesion molecule-1 and major histocompatibility complex class-I. Am. J. Pathol. 142(5), 1598–1609 (1993)Google Scholar
  72. 72.
    Hubbard, A.K., Rothlein, R.: Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 28(9), 1379–1386 (2000)CrossRefGoogle Scholar
  73. 73.
    Roebuck, K.A., et al.: H2o2 and tumor-necrosis-factor-alpha activate intercellular-adhesion molecule-1 (Icam-1) gene-transcription through distinct cis-regulatory elements within the Icam-1 Promoter. J. Biol. Chem. 270(32), 18966–18974 (1995)CrossRefGoogle Scholar
  74. 74.
    Kawai, M., et al.: Pyrrolidine dithiocarbamate inhibits intercellular-adhesion molecule-1 biosynthesis induced by cytokines in human fibroblasts. J. Immunol. 154(5), 2333–2341 (1995)Google Scholar
  75. 75.
    Saccani, A., et al.: Redox regulation of chemokine receptor expression. Proc. Natl. Acad. Sci. USA 97(6), 2761–2766 (2000)CrossRefGoogle Scholar
  76. 76.
    Lehoux, G., et al.: Upregulation of expression of the chemokine receptor CCR5 by hydrogen peroxide in human monocytes. Mediators Inflamm. 12(1), 29–35 (2003)CrossRefGoogle Scholar
  77. 77.
    Sung, F.L., Siow, X.L., Wang, G., Lynn, E.G., and Karmin, O.: Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: possible involvement of oxygen free radicals. Biochem. J. 357(Pt 1), 233–240 (2001)Google Scholar
  78. 78.
    Raja, et al.: Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front. Biosci. 12, 2249–2268 (2007)Google Scholar
  79. 79.
    Haase, I., et al.: Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. J. Cell Sci. 116(15), 3227–3238 (2003)CrossRefGoogle Scholar
  80. 80.
    Vardatsikos, G., Sahu, A., Srivastava, A.K.: The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid. Redox Signal. 11(5), 1165–1190 (2009)CrossRefGoogle Scholar
  81. 81.
    Higashi, Y., et al.: A redox-sensitive pathway mediates oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. J. Lipid Res. 46(6), 1266–1277 (2005)CrossRefGoogle Scholar
  82. 82.
    Hober, S., et al.: Insulin-like growth factors I and II are unable to form and maintain their native disulfides under in vivo redox conditions. FEBS Lett. 443(3), 271–276 (1999)CrossRefGoogle Scholar
  83. 83.
    Nishio, E., Watanabe, Y.: The involvement of reactive oxygen species and arachidonic acid in alpha 1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br. J. Pharmacol. 121(4), 665–670 (1997)CrossRefGoogle Scholar
  84. 84.
    Ranjan, P., et al.: Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid. Redox Signal. 8(9–10), 1447–1459 (2006)CrossRefGoogle Scholar
  85. 85.
    Rajagopalan, S., et al.: Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98(11), 2572–2579 (1996)CrossRefGoogle Scholar
  86. 86.
    Grange, L., et al.: NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid. Redox Signal. 8(9–10), 1485–1496 (2006)CrossRefGoogle Scholar
  87. 87.
    Yoon, S.O., et al.: Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. J. Biol. Chem. 277(33), 30271–30282 (2002)CrossRefGoogle Scholar
  88. 88.
    Clark, R.A.F.: The Molecular and Cellular Biology of Wound Repair, 2nd edn. Plenum, New York (1996)Google Scholar
  89. 89.
    Roy, S., et al.: Dermal wound healing is subject to redox control. Mol. Ther. 13(1), 211–220 (2006)CrossRefGoogle Scholar
  90. 90.
    Arbiser, J.L., et al.: Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl Acad. Sci. USA 99(2), 715–720 (2002)CrossRefGoogle Scholar
  91. 91.
    West, X.Z., et al.: Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318), 972–976 (2010)CrossRefGoogle Scholar
  92. 92.
    Liu, X.P., Zweier, J.L.: A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: Evaluation in human polymorphonuclear leukocytes. Free Radic. Biol. Med. 31(7), 894–901 (2001)CrossRefGoogle Scholar
  93. 93.
    Ojha, N., et al.: Assessment of wound-site redox environment and the significance of Rac2 in cutaneous healing. Free Radic. Biol. Med. 44(4), 682–691 (2008)CrossRefGoogle Scholar
  94. 94.
    Stadtman, E.R.: Protein oxidation and aging. Free Radic. Res. 40(12), 1250–1258 (2006)CrossRefGoogle Scholar
  95. 95.
    Haycock, J.W., et al.: Oxidative damage to protein and alterations to antioxidant levels in human cutaneous thermal injury. Burns 23(7–8), 533–540 (1997)CrossRefGoogle Scholar
  96. 96.
    Aksenova, M., et al.: Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J. Neurotrauma 19(4), 491–502 (2002)CrossRefGoogle Scholar
  97. 97.
    Xiong, Y.Q., Rabchevsky, A.G., Hall, E.D.: Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J. Neurochem. 100(3), 639–649 (2007)CrossRefGoogle Scholar
  98. 98.
    Kamencic, H., et al.: Promoting glutathione synthesis after spinal cord trauma decreases secondary damage and promotes retention of function. FASEB J. 15(1), 243–250 (2001)CrossRefGoogle Scholar
  99. 99.
    Kumin, A., et al.: Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J. Cell Biol. 179(4), 747–760 (2007)CrossRefGoogle Scholar
  100. 100.
    Moseley, R., et al.: Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen. 12(4), 419–429 (2004)CrossRefGoogle Scholar
  101. 101.
    Pagnin, E., et al.: Diabetes induces p66(shc) gene expression in human peripheral blood mononuclear cells: Relationship to oxidative stress. J. Clin. Endocrinol. Metab. 90(2), 1130–1136 (2005)CrossRefGoogle Scholar
  102. 102.
    Fadini, G.P., et al.: The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59(9), 2306–2314 (2010)CrossRefGoogle Scholar
  103. 103.
    Uchida, K., Stadtman, E.R.: Modification of histidine-residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA 89(10), 4544–4548 (1992)CrossRefGoogle Scholar
  104. 104.
    Cao, Y., et al.: Neuroprotective effect of baicalin on compression spinal cord injury in rats. Brain Res. 1357, 115–123 (2010)CrossRefGoogle Scholar
  105. 105.
    Gupta, A., Singh, R.L., Raghubir, R.: Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol. Cell. Biochem. 241(1–2), 1–7 (2002)CrossRefGoogle Scholar
  106. 106.
    Grootveld, M., Halliwell, B.: Measurement of allantoin and uric-acid in human-body fluids – a potential index of free-radical reactions invivo. Biochem. J. 243(3), 803–808 (1987)Google Scholar
  107. 107.
    James, T.J., et al.: Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen. 11(3), 172–176 (2003)CrossRefGoogle Scholar
  108. 108.
    Morrow, J.D., et al.: Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed insitu on phospholipids. Proc. Natl Acad. Sci. USA 89(22), 10721–10725 (1992)CrossRefGoogle Scholar
  109. 109.
    Meagher, E.A., Fitzgerald, G.A.: Indices of lipid peroxidation in vivo: Strengths and limitations. Free Radic. Biol. Med. 28(12), 1745–1750 (2000)CrossRefGoogle Scholar
  110. 110.
    Yeoh-Ellerton, S., Stacey, M.C.: Iron and 8-isoprostane levels in acute and chronic wounds. J. Invest. Dermatol. 121(4), 918–925 (2003)CrossRefGoogle Scholar
  111. 111.
    Awad, J.A., Morrow, J.D.: Excretion of F-2-isoprostanes in bile – a novel index of hepatic lipid-peroxidation. Hepatology 22(3), 962–968 (1995)Google Scholar
  112. 112.
    Shukla, A., Rasik, A.M., Patnaik, G.K.: Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 26(2), 93–101 (1997)CrossRefGoogle Scholar
  113. 113.
    Rasik, A.M., Shukla, A.: Antioxidant status in delayed healing type of wounds. Int. J. Exp. Pathol. 81(4), 257–263 (2000)CrossRefGoogle Scholar
  114. 114.
    Mudge, B.P., et al.: Role of glutathione redox dysfunction in diabetic wounds. Wound Repair Regen. 10(1), 52–58 (2002)CrossRefGoogle Scholar
  115. 115.
    Adamson, B., et al.: Delayed repair: The role of glutathione in a rat incisional wound model. J. Surg. Res. 62(2), 159–164 (1996)CrossRefGoogle Scholar
  116. 116.
    Rees, R.S., et al.: Oxidant stress – the role of the glutathione redox cycle in skin preconditioning. J. Surg. Res. 58(4), 395–400 (1995)CrossRefGoogle Scholar
  117. 117.
    Levy, E.J., Anderson, M.E., Meister, A.: Transport of glutathione diethyl ester into human-cells. Proc. Natl Acad. Sci. USA 90(19), 9171–9175 (1993)CrossRefGoogle Scholar
  118. 118.
    Musalmah, M., et al.: Comparative effects of palm vitamin E and alpha-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats. Lipids 40(6), 575–580 (2005)CrossRefGoogle Scholar
  119. 119.
    Traber, M.G., Podda, M., Weber, C., Yan, L.J., Packer, L.: Diet derived and topically applied tocotrienols accumulate in skin and protect the tissue against UV-induced oxidative stress. Asia Pac. J. Clin. Nutr. 6, 63–67 (1997)Google Scholar
  120. 120.
    Serbinova, E., et al.: Free-radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic. Biol. Med. 10(5), 263–275 (1991)CrossRefGoogle Scholar
  121. 121.
    Suzuki, Y., et al.: Structural and dynamic membrane-properties of alpha-tocopherol and alpha-tocotrienol - implication to the molecular mechanism of their antioxidant potency. Biochemistry 32(40), 10692–10699 (1993)CrossRefGoogle Scholar
  122. 122.
    Altavilla, D., et al.: Lipid peroxidation inhibition by raxofelast improves angiogenesis and wound healing in experimental burn wounds. Shock 24(1), 85–91 (2005)CrossRefGoogle Scholar
  123. 123.
    Altavilla, D., et al.: Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 50(3), 667–674 (2001)CrossRefGoogle Scholar
  124. 124.
    Ruby, A.J., et al.: Antitumor and antioxidant activity of natural curcuminoids. Cancer Lett. 94(1), 79–83 (1995)CrossRefGoogle Scholar
  125. 125.
    Kunnumakkara, A.B., Anand, P., Aggarwal, B.B.: Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 269(2), 199–225 (2008)CrossRefGoogle Scholar
  126. 126.
    Maheshwari, R.K., et al.: Multiple biological activities of curcumin: a short review. Life Sci. 78(18), 2081–2087 (2006)CrossRefGoogle Scholar
  127. 127.
    Thangapazham, R.L., Sharma, A., Maheshwari, R.K.: Beneficial role of curcumin in skin diseases. Adv. Exp. Med. Biol. 595, 343–357 (2007)CrossRefGoogle Scholar
  128. 128.
    Panchatcharam, M., et al.: Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol. Cell. Biochem. 290(1–2), 87–96 (2006)CrossRefGoogle Scholar
  129. 129.
    Sidhu, G.S., et al.: Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 6(2), 167–177 (1998)CrossRefGoogle Scholar
  130. 130.
    Sidhu, G.S., et al.: Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen. 7(5), 362–374 (1999)CrossRefGoogle Scholar
  131. 131.
    Faler, B.J., et al.: Transforming growth factor-beta and wound healing. Perspect. Vasc. Surg. Endovasc. Ther. 18(1), 55–62 (2006)CrossRefGoogle Scholar
  132. 132.
    Gailit, J., Welch, M.P., Clark, R.A.: TGF-beta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J. Invest. Dermatol. 103(2), 221–227 (1994)CrossRefGoogle Scholar
  133. 133.
    Madhyastha, R., et al.: Curcumin facilitates fibrinolysis and cellular migration during wound healing by modulating urokinase plasminogen activator expression. Pathophysiol. Haemost. Thromb. 37(2–4), 59–66 (2010)Google Scholar
  134. 134.
    Choong, P.F., Nadesapillai, A.P.: Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin. Orthop. Relat. Res. 415 (Suppl), S46–S58 (2003)CrossRefGoogle Scholar
  135. 135.
    Biswas, S.K., et al.: Curcumin induces glutathione biosynthesis and inhibits NF-kappa B activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid. Redox Signal. 7(1–2), 32–41 (2005)CrossRefGoogle Scholar
  136. 136.
    Ringsdorf Jr., W.M., Cheraskin, E.: Vitamin C and human wound healing. Oral. Surg. Oral. Med. Oral. Pathol. 53(3), 231–236 (1982)CrossRefGoogle Scholar
  137. 137.
    Lima, C.C., et al.: Ascorbic acid for the healing of skin wounds in rats. Braz. J. Biol. 69(4), 1195–1201 (2009)CrossRefGoogle Scholar
  138. 138.
    Jagetia, G.C., et al.: Augmentation of wound healing by ascorbic acid treatment in mice exposed to gamma-radiation. Int. J. Radiat. Biol. 80(5), 347–354 (2004)CrossRefGoogle Scholar
  139. 139.
    Chan, D., et al.: Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. Biochem. J. 269(1), 175–181 (1990)Google Scholar
  140. 140.
    Peterkofsky, B.: Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am. J. Clin. Nutr. 54(6 Suppl), 1135S–1140S (1991)Google Scholar
  141. 141.
    Duarte, T.L., Cooke, M.S., Jones, G.D.: Gene expression profiling reveals new protective roles for vitamin C in human skin cells. Free Radic. Biol. Med. 46(1), 78–87 (2009)CrossRefGoogle Scholar
  142. 142.
    Gomathi, K., et al.: Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials 24(16), 2767–2772 (2003)CrossRefGoogle Scholar
  143. 143.
    Senel, O., et al.: Oxygen free radicals impair wound healing in ischemic rat skin. Ann. Plast. Surg. 39(5), 516–523 (1997)CrossRefGoogle Scholar
  144. 144.
    Abdelmalek, M., Spencer, J.: Retinoids and wound healing. Dermatol. Surg. 32(10), 1219–1230 (2006)CrossRefGoogle Scholar
  145. 145.
    Chigurupati, S., et al.: A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS One 5(4), e10044 (2010)CrossRefGoogle Scholar
  146. 146.
    Iuchi, Y., et al.: Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 341(1–2), 181–194 (2010)CrossRefGoogle Scholar
  147. 147.
    Steiling, H., et al.: Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 247(2), 484–494 (1999)CrossRefGoogle Scholar
  148. 148.
    Bayir, H., et al.: Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J. Neurochem. 101(1), 168–181 (2007)CrossRefGoogle Scholar
  149. 149.
    Pigeolet, E., et al.: Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Ageing Dev. 51(3), 283–297 (1990)CrossRefGoogle Scholar
  150. 150.
    Luo, J.D., et al.: Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 110(16), 2484–2493 (2004)CrossRefGoogle Scholar
  151. 151.
    Marrotte, E.J., et al.: Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J. Clin. Invest. 120(12), 4207–4219 (2010)CrossRefGoogle Scholar
  152. 152.
    Ceradini, D.J., et al.: Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J. Biol. Chem. 283(16), 10930–10938 (2008)CrossRefGoogle Scholar
  153. 153.
    Sen, C.K., et al.: Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J. Biol. Chem. 277(36), 33284–33290 (2002)CrossRefGoogle Scholar
  154. 154.
    Grzenkowicz-Wydra, J., et al.: Gene transfer of CuZn superoxide dismutase enhances the synthesis of vascular endothelial growth factor. Mol. Cell. Biochem. 264(1–2), 169–181 (2004)CrossRefGoogle Scholar
  155. 155.
    Ushio-Fukai, M., Alexander, R.W.: Reactive oxygen species as mediators of angiogenesis signaling - Role of NAD(P)H oxidase. Mol. Cell. Biochem. 264(1–2), 85–97 (2004)CrossRefGoogle Scholar
  156. 156.
    Alacam, A., et al.: Effects of topical Catalase application on dental pulp tissue: a histopathological evaluation. J. Dent. 28(5), 333–339 (2000)CrossRefGoogle Scholar
  157. 157.
    Auf dem Keller, U., et al.: Reactive oxygen species and their detoxification in healing skin wounds. J. Investig. Dermatol. Symp. Proc. 11(1), 106–111 (2006)CrossRefGoogle Scholar
  158. 158.
    Munz, B., et al.: A novel type of glutathione peroxidase: expression and regulation during wound repair. Biochem. J. 326(Pt 2), 579–585 (1997)Google Scholar
  159. 159.
    Kumin, A., et al.: Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am. J. Pathol. 169(4), 1194–1205 (2006)CrossRefGoogle Scholar
  160. 160.
    Wang, X., et al.: Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem. 278(27), 25179–25190 (2003)CrossRefGoogle Scholar
  161. 161.
    Schafer, M., Werner, S.: Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 58(2), 165–171 (2008)CrossRefGoogle Scholar
  162. 162.
    Wicke, C., et al.: Effects of steroids and retinoids on wound healing. Arch. Surg. 135(11), 1265–1270 (2000)CrossRefGoogle Scholar
  163. 163.
    Gopinath, D., et al.: Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25(10), 1911–1917 (2004)CrossRefGoogle Scholar
  164. 164.
    Merrell, J.G., et al.: Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol. 36(12), 1149–1156 (2009)CrossRefGoogle Scholar
  165. 165.
    Suwantong, O., et al.: Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48(26), 7546–7557 (2007)CrossRefGoogle Scholar
  166. 166.
    Chiumiento, A., et al.: Immobilizing Cu, Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. Biochem.-Moscow 71(12), 1324–1328 (2006)CrossRefGoogle Scholar
  167. 167.
    Kao, W.Y.J., Kleinbeck, K.R., Faucher, L.D.: Biomaterials modulate interleukin-8 and other inflammatory proteins during reepithelialization in cutaneous partial-thickness wounds in pigs. Wound Repair Regen. 18(5), 486–498 (2010)CrossRefGoogle Scholar
  168. 168.
    Jiang, W.W., et al.: Phagocyte responses to degradable polymers. J. Biomed. Mater. Res. A 82A(2), 492–497 (2007)CrossRefGoogle Scholar
  169. 169.
    Geurtsen, W., et al.: Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3 T3 and three human primary fibroblast cultures. J. Biomed. Mater. Res. 41(3), 474–480 (1998)CrossRefGoogle Scholar
  170. 170.
    Lefeuvre, M., et al.: TEGDMA induces mitochondrial damage and oxidative stress in human gingival fibroblasts. Biomaterials 26(25), 5130–5137 (2005)CrossRefGoogle Scholar
  171. 171.
    Serrano, M.C., et al.: Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films. Biomaterials 26(29), 5827–5834 (2005)CrossRefGoogle Scholar
  172. 172.
    Fleming, C., et al.: A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility. Nat. Chem. Biol. 1(5), 270–274 (2005)CrossRefGoogle Scholar
  173. 173.
    Spizzirri, U.G., et al.: Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10(7), 1923–1930 (2009)CrossRefGoogle Scholar
  174. 174.
    Wang, Y.Z., et al.: Expansion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells on a vitamin C functionalized polymer. Biomaterials 27(17), 3265–3273 (2006)CrossRefGoogle Scholar
  175. 175.
    Williams, S.R., et al.: Synthesis and characterization of poly(ethylene glycol)-glutathione conjugate self-assembled nanoparticles for antioxidant delivery. Biomacromolecules 10(1), 155–161 (2009)CrossRefGoogle Scholar
  176. 176.
    Udipi, K., et al.: Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J. Biomed. Mater. Res. 51(4), 549–560 (2000)CrossRefGoogle Scholar
  177. 177.
    Tsukimura, N., et al.: N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Biomaterials 30(20), 3378–3389 (2009)CrossRefGoogle Scholar
  178. 178.
    Wattamwar, P.P., et al.: Antioxidant activity of degradable polymer poly(trolox ester) to suppress oxidative stress injury in the cells. Adv. Funct. Mater. 20(1), 147–154 (2010)CrossRefGoogle Scholar
  179. 179.
    Vasilakes, A., Byarski, J.P., Biswal, D., Wattamwar, P.P., Peyyala, R., Hilt, J.Z., and Dzivbla, T.D.: Controlled release of catalase and vancomycin from poly(β-amino ester) Hydrogels J. Control. Release. (submitted)Google Scholar
  180. 180.
    Macri, L., Clark, R.A.F.: Tissue Engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Skin Pharmacol. Physiol. 22(2), 83–93 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations