Skip to main content

Tissue Engineering Strategies for Vocal Fold Repair and Regeneration

  • Chapter
  • First Online:
Book cover Engineering Biomaterials for Regenerative Medicine

Abstract

Vocal fold is one of the most mechanically active tissues in the human body, producing a great variety of sounds through a regular, wave-like motion of the lamina propria (LP) at frequencies of 100-1,000 Hz and strains up to 30% [1]. Each vocal fold consists of a pliable vibratory layer of connective tissue, known as the lamina propria (LP), sandwiched between epithelium and muscle [2, 3]. The lamina propria plays a critical role in the production of voice as its shape and tension determine the vibratory characteristics of the vocal folds. Numerous environmental factors and pathological conditions can damage the delicate tissue; and patients suffering from vocal fold disorders are socially isolated due to their inability to phonate. This chapter summarizes recent endeavors in vocal fold regeneration using biomaterial-based, tissue engineering methodologies. Successful repair and regeneration of vocal fold lamina propria relies on the attainment of vocal fold-specific, biomimetic matrices that not only foster the attachment and proliferation of vocal fold fibroblast-like cells, but also induce the production of an extracellular matrix (ECM) that approximates the native tissue in terms of the biochemical composition, structural organization, and mechanical characteristics. The performance of the artificial matrices can be further enhanced by incorporating morphogenic factors and physiologically relevant biomechanical stimulations. Strategic combination of polymeric scaffolds, multipotent cells, defined biological factors, and biomechanical signals will lead to the successful reconstruction of functional vocal fold tissues that can be used as an alternative treatment modality for patients suffering from severe vocal fold disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Titze, I.R. (ed.): Principles of Voice Production, 2nd edn, p. 409. National Center for Voice and Speech, Iowa City (2000)

    Google Scholar 

  2. Gray, S.D.: Cellular physiology of the vocal folds. Otolaryngol. Clin. North Am. 33(4), 679–697 (2000)

    CAS  Google Scholar 

  3. Hirano, M., Kurita, S., Nakashima, T.: Vocal Fold Physiology: Contemporary Research and Clinical Issues. In Vocal Fold Physiology, Conference. College-Hill, San Diego, CA (1981)

    Google Scholar 

  4. Hahn, M.S., Kobler, J.B., Starcher, B.C., Zeitels, S.M., Langer, R.: Quantitative and comparative studies of the vocal fold extracellular matrix - I: Elastic fibers and hyaluronic acid. Ann. Otol. Rhinol. Laryngol. 115(2), 156–164 (2006)

    Google Scholar 

  5. Hahn, M.S., Kobler, J.B., Zeitels, S.M., Langer, R.: Quantitative and comparative studies of the vocal fold extracellular matrix II: Collagen. Ann. Otol. Rhinol. Laryngol. 115(3), 225–232 (2006)

    Google Scholar 

  6. Hahn, M.S., Jao, C.Y., Faquin, W., Grande-Allen, K.J.: Glycosaminoglycan composition of the vocal fold lamina propria in relation to function. Ann. Otol. Rhinol. Laryngol. 117(5), 371–381 (2008)

    Google Scholar 

  7. Munoz-Pinto, D., Whittaker, P., Hahn, M.S.: Lamina propria cellularity and collagen composition: an integrated assessment of structure in humans. Ann. Otol. Rhinol. Laryngol. 118(4), 299–306 (2009)

    Google Scholar 

  8. Hammond, T.H., Gray, S.D., Butler, J., Zhou, R., Hammond, E.: Age- and gender-related elastin distribution changes in human vocal folds. Otolaryngol. Head Neck Surg. 119(4), 314–322 (1998)

    CAS  Google Scholar 

  9. Hammond, T.H., Zhou, R., Hammond, E.H., Pawlak, A., Gray, S.D.: The intermediate layer: A morphologic study of the elastin and hyaluronic acid constituents of normal human vocal folds. J. Voice 11(1), 59–66 (1997)

    CAS  Google Scholar 

  10. Ward, P.D., Thibeault, S.L., Gray, S.D.: Hyaluronic acid: Its role in voice. J. Voice 16(3), 303–309 (2002)

    Google Scholar 

  11. Gray, S.D., Titze, I.R., Alipour, F., Hammond, T.H.: Biomechanical and histologic observations of vocal fold fibrous proteins. Ann. Otol. Rhinol. Laryngol. 109(1), 77–85 (2000)

    CAS  Google Scholar 

  12. Chan, R.W., Fu, M., Young, L., Tirunagari, N.: Relative contributions of collagen and elastin to elasticity of the vocal fold under tension. Ann. Biomed. Eng. 35(8), 1471–1483 (2007)

    Google Scholar 

  13. Pawlak, A.S., Hammond, T., Hammond, E., Gray, S.D.: Immunocytochemical study of proteoglycans in vocal folds. Ann. Otol. Rhinol. Laryngol. 105(1), 6–11 (1996)

    CAS  Google Scholar 

  14. Chan, R.W., Titze, I.R.: Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa. Laryngoscope 109(7), 1142–1149 (1999)

    CAS  Google Scholar 

  15. Gray, S.D., Titze, I.R., Chan, R., Hammond, T.H.: Vocal fold proteoglycans and their influence on biomechanics. Laryngoscope 109(6), 845–854 (1999)

    CAS  Google Scholar 

  16. Chan, R.W., Gray, S.D., I.R. Titze.: The importance of hyaluronic acid in vocal fold biomechanics. Otolaryngol. Head Neck Surg. 124(6), 607–614 (2001)

    Google Scholar 

  17. Ruoslahti, E.: Fibronectin and its receptors. Annu. Rev. Biochem. 57, 375–413 (1988)

    CAS  Google Scholar 

  18. Hammond, T.H., Gray, S.D., Butler, J.E.: Age- and gender-related collagen distribution in human vocal folds. Ann. Otol. Rhinol. Laryngol. 109(10), 913–920 (2000)

    CAS  Google Scholar 

  19. Catten, M., Gray, S.D., Hammond, T.H., Zhou, R., Hammond, E.: Analysis of cellular location and concentration in vocal fold lamina propria. Otolaryngol. Head Neck Surg. 118(5), 663–667 (1998)

    CAS  Google Scholar 

  20. Sato, K., Hirano, M., Nakashima, T.: Fine structure of the human newborn and infant vocal fold mucosae. Ann. Otol. Rhinol. Laryngol. 110(5), 417–424 (2001)

    CAS  Google Scholar 

  21. Schweinfurth, J.M., Thibeault, S.L.: Does hyaluronic acid distribution in the larynx relate to the newborn’s capacity for crying? Laryngoscope 118(9), 1692–1699 (2008)

    CAS  Google Scholar 

  22. Boseley, M.E., Hartnick, C.J.: Development of the human true vocal fold: Depth of cell layers and quantifying cell types within the lamina propria. Ann. Otol. Rhinol. Laryngol. 115(10), 784–7888 (2006)

    Google Scholar 

  23. Hartnick, C.J., Rehbar, R., Prasad, V.: Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 115(1), 4–15 (2005)

    Google Scholar 

  24. Min, Y.B., Titze, I.R., Alipourhaghighi, F.: Stress–strain response of the human vocal ligament. Ann. Otol. Rhinol. Laryngol. 104(7), 563–569 (1995)

    CAS  Google Scholar 

  25. Kutty, J.K., Webb, K.: Tissue engineering therapies for the vocal fold lamina propria. Tissue Eng. Part B Rev. 15(3), 249–262 (2009)

    CAS  Google Scholar 

  26. Chan, R.W., Titze, I.R.: Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. J. Acoust. Soc. Am. 106(4), 2008–2021 (1999)

    CAS  Google Scholar 

  27. Chan, R.W.: Measurements of vocal fold tissue viscoelasticity: Approaching the male phonatory frequency range. J. Acoust. Soc. Am. 115(6), 3161–3170 (2004)

    Google Scholar 

  28. Clifton, R.J., Jiao, T., Bull, C.: Methods and apparatus for measuring the viscoelastic response of vocal fold tissues and scaffolds across a frequency range, US Patent Application, Pub. No. US 2006/0207343 A1, 2004

    Google Scholar 

  29. Deng, T.H., Knauss, W.G.: The temperature and frequency dependence of the bulk compliance of poly(vinyl acetate). A re-examination. Mech. Time-Depend. Mater. 1(1), 33–49 (1997)

    Google Scholar 

  30. Trunov, M., Bilanich, V., Dub, S.: Nanoindentation study of the time-dependent mechanical behavior of materials. Tech. Phys. 7710, 50–57 (2007)

    Google Scholar 

  31. Jiao, T., Farran, A., Jia, X., Clifton, R.: High frequency measurements of viscoelastic properties of hydrogels for vocal fold regeneration. Exp. Mech. 49, 235–246 (2009)

    Google Scholar 

  32. Clifton, R.J., Jia, X., Jiao, T., Bull, C., Hahn, M.S.: Viscoelastic response of vocal fold tissues and scaffolds at high frequencies, in Mechanics of Biological Tissue. In: Holzapfel, G.A., Ogden, R.W. (Eds.), New York, NY, Springer, 445–455 (2006)

    Google Scholar 

  33. Jia, X.Q., Burdick, J.A., Kobler, J., Clifton, R.J., Rosowski, J.J., Zeitels, S.M., Langer, R.: Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. Macromolecules 37(9), 3239–3248 (2004)

    CAS  Google Scholar 

  34. Jha, A.K., Hule, R.A., Jiao, T., Teller, S.S., Clifton, R.J., Duncan, R.L., Pochan, D.J., Jia, X.Q.: Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 42(2), 537–546 (2009)

    CAS  Google Scholar 

  35. Jia, X.Q., Yeo, Y., Clifton, R.J., Jiao, T., Kohane, D.S., Kobler, J.B., Zeitels, S.M., Langer, R.: Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7(12), 3336–3344 (2006)

    CAS  Google Scholar 

  36. Farran, A.J.E., Teller, S.S., Jha, A.K., Jiao, T., Hule, R.A., Clifton, R.J., Pochan, D.P., Duncan, R.L., Jia, X.Q.: Effects of matrix composition, microstructure, and viscoelasticity on the behaviors of vocal fold fibroblasts cultured in three-dimensional hydrogel networks. Tissue Eng. Part A 16(4), 1247–1261 (2010)

    CAS  Google Scholar 

  37. Williams, N.R.: Occupational groups at risk of voice disorders: a review of the literature. Occup. Med. (Lond.) 53(7), 456–460 (2003)

    CAS  Google Scholar 

  38. Roy, N., Merrill, R.M., Gray, S.D., Smith, E.M.: Voice disorders in the general population: Prevalence, risk factors, and occupational impact. Laryngoscope 115(11), 1988–1995 (2005)

    Google Scholar 

  39. Hansen, J.K., Thibeault, S.L.: Current understanding and review of the literature: Vocal fold scarring. J. Voice 20(1), 110–120 (2006)

    Google Scholar 

  40. Hahn, M.S., Teply, B.A., Stevens, M.M., Zeitels, S.M., Langer, R.: Collagen composite hydrogels for vocal fold lamina propria restoration. Biomaterials 27(7), 1104–1109 (2006)

    CAS  Google Scholar 

  41. Hirano, S.: Current treatment of vocal fold scarring. Curr. Opin. Otolaryngol. Head Neck Surg. 13(3), 143–147 (2005)

    Google Scholar 

  42. Branski, R.C., Verdolini, K., Sandulache, V., Rosen, C.A., Hebda, P.A.: Vocal fold wound healing: A review for clinicians. J. Voice 20(3), 432–442 (2006)

    Google Scholar 

  43. Hirano, S., Minamiguchi, S., Yamashita, M., Ohno, T., Kanemaru, S.-I., Kitamura, M.: Histologic characterization of human scarred vocal folds. J. Voice 23(4), 399–407 (2009)

    Google Scholar 

  44. Thibeault, S.L., Gray, S.D., Bless, D.M., Chan, R.W., Ford, C.N.: Histologic and rheologic characterization of vocal fold scarring. J. Voice 16(1), 96–104 (2002)

    Google Scholar 

  45. Rousseau, B., Hirano, S., Chan, R.W., Welham, N.V., Thibeault, S.L., Ford, C.N., Bless, D.M.: Characterization of chronic vocal fold scarring in a rabbit model. J. Voice 18(1), 116–124 (2004)

    Google Scholar 

  46. Rousseau, B., Hirano, S., Scheidt, T.D., Welham, N.V., Thibeault, S.L., Chan, R.W., Bless, D.M.: Characterization of vocal fold scarring in a canine model. Laryngoscope 113(4), 620–627 (2003)

    Google Scholar 

  47. Thibeault, S.L., Bless, D.M., Gray, S.D.: Interstitial protein alterations in rabbit vocal fold with scar. J. Voice 17(3), 377–383 (2003)

    Google Scholar 

  48. Ehrlich, H.P.: Collagen considerations in scarring and regenerative repair. In: Garg, H.G., Longaker, M.T. (eds.) Scarless Wound Healing, pp. 99–113. Marcel Dekker, New York (2000)

    Google Scholar 

  49. Chin, G.S., Stelnicki, E.J., Gittes, G.K., Longaker, M.T.: Characteristics of fetal wound repair. In: Garg, H.G., Longaker, M.T. (eds.) Scareless Wound Healing, pp. 239–262. Marcel Dekker, New York (2000)

    Google Scholar 

  50. Croce, M.A., Dyne, K., Boraldi, F., Quaglino, D., Cetta, G., Tiozzo, R., Ronchetti, I.P.: Hyaluronan affects protein and collagen synthesis by in vitro human skin fibroblasts. Tissue Cell 33(4), 326–331 (2001)

    CAS  Google Scholar 

  51. Gray, S.D., Hammond, E., Hanson, D.F.: Benign pathological responses of the larynx. Ann. Otol. Rhinol. Laryngol. 104(1), 13–18 (1995)

    CAS  Google Scholar 

  52. Benninger, M.S., Alessi, D., Archer, S., Bastian, R., Ford, C., Koufman, J., Sataloff, R.T., Spiegel, J.R., Woo, P.: Vocal fold scarring: Current concepts and management. Otolaryngol. Head Neck Surg. 115(5), 474–482 (1996)

    CAS  Google Scholar 

  53. Zeitels, S.M.: Atlas of Phonomicrosurgery and Other Endolaryngeal Procedures for Benign and Malignant Disease. Singular Publishing Group, San Diego (2001)

    Google Scholar 

  54. Zeitels, S.M., Healy, G.B.: Laryngology and phonosurgery. N. Engl. J. Med. 349(9), 882–892 (2003)

    Google Scholar 

  55. Costantino, P.D., Friedman, C.D.: Soft-tissue augmentation and replacement in the head and neck. General considerations. Otolaryngol. Clin. North Am. 27(1), 1–12 (1994)

    CAS  Google Scholar 

  56. Lewy, R.B.: Teflon injection of the vocal cord: complications, errors, and precautions. Ann. Otol. Rhinol. Laryngol. 92(5 Pt 1), 473–474 (1983)

    CAS  Google Scholar 

  57. Pohris, E., Kleinsasser, O.: Stenosis of the larynx following Teflon injection. Arch. Otorhinolaryngol. 244(1), 44–48 (1987)

    CAS  Google Scholar 

  58. Rosen, C.A., Gartner-Schmidt, J., Casiano, R., Anderson, T.D., Johnson, F., Remacle, M., Sataloff, R.T., Abitbol, J., Shaw, G., Archer, S., Zraick, R.I.: Vocal fold augmentation with calcium hydroxylapatite: Twelve-month report. Laryngoscope 119(5), 1033–1041 (2009)

    CAS  Google Scholar 

  59. Sittel, C., Thumfart, W.F., Pototschnig, C., Wittekindt, C., Eckel, H.E.: Textured polydimethylsiloxane elastomers in the human larynx: safety and efficiency of use. J. Biomed. Mater. Res. 53(6), 646–650 (2000)

    CAS  Google Scholar 

  60. Yamashita, M., Kanemaru, S., Hirano, S., Umeda, H., Kitani, Y., Omori, K., Nakamura, T., Ito, J.: Glottal reconstruction with a tissue engineering technique using polypropylene mesh: a canine experiment. Ann. Otol. Rhinol. Laryngol. 119(2), 110–117 (2010)

    Google Scholar 

  61. Cheng, Y., Li, Z.Q., Huang, J.Z., Xue, F., Jiang, M.J., Wu, K.M., Wang, Q.P.: Combination of autologous fascia lata and fat injection into the vocal fold via the cricothyroid gap for unilateral vocal fold paralysis. Arch. Otolaryngol. Head Neck Surg. 135(8), 759–763 (2009)

    Google Scholar 

  62. Umeno, H., Shirouzu, H., Chitose, S., Nakashima, T.: Analysis of voice function following autologous fat injection for vocal fold paralysis. Otolaryngol. Head Neck Surg. 132(1), 103–107 (2005)

    Google Scholar 

  63. Ford, C.N.: Histologic studies on the fate of soluble collagen injected into canine vocal folds. Laryngoscope 96(11), 1248–1257 (1986)

    CAS  Google Scholar 

  64. Anderson, T.D., Sataloff, T.T.: Complications of collagen injection of the vocal fold: Report of several unusual cases and review of the literature. J. Voice 18(3), 392–397 (2004)

    Google Scholar 

  65. Hirano, S., Bless, D.A., Nagai, H., Rousseau, B., Welham, N.V., Montequin, D.W., Ford, C.N.: Growth factor therapy for vocal fold scarring in a canine model. Ann. Otol. Rhinol. Laryngol. 113(10), 777–785 (2004)

    Google Scholar 

  66. Hirano, S., Bless, D.M., Rousseau, B., Welham, N., Montequin, D., Chan, R.W., Ford, C.N.: Prevention of vocal fold scarring by topical injection of hepatocyte growth factor in a rabbit model. Laryngoscope 114(3), 548–556 (2004)

    Google Scholar 

  67. Hirano, S., Bless, D., Heisey, D., Ford, C.: Roles of hepatocyte growth factor and transforming growth factor beta 1 in production of extracellular matrix by canine vocal fold fibroblasts. Laryngoscope 113(1), 144–148 (2003)

    CAS  Google Scholar 

  68. Hirano, S., Bless, D.M., Massey, R.J., Hartig, G.K., Ford, C.N.: Morphological and functional changes of human vocal fold fibroblasts with hepatocyte growth factor. Ann. Otol. Rhinol. Laryngol. 112(12), 1026–1033 (2003)

    Google Scholar 

  69. Hirano, S., Nagai, H., Tateya, I., Tateya, T., Ford, C.N., Bless, D.M.: Regeneration of aged vocal folds with basic fibroblast growth factor in a rat model: a preliminary report. Ann. Otol. Rhinol. Laryngol. 114(4), 304–308 (2005)

    Google Scholar 

  70. Suehiro, A., Hirano, S., Kishimoto, Y., Rousseau, B., Nakamura, T., Ito, J.: Treatment of acute vocal fold scar with local injection of basic fibroblast growth factor: a canine study. Acta Otolaryngol. 130(7), 844–850 (2010)

    CAS  Google Scholar 

  71. Hirano, S., Kishimoto, Y., Suehiro, A., Kanemaru, S., Ito, J.: Regeneration of aged vocal fold: first human case treated with fibroblast growth factor. Laryngoscope 118(12), 2254–2259 (2008)

    Google Scholar 

  72. Kishimoto, Y., Hirano, S., Kitani, Y., Suehiro, A., Umeda, H., Tateya, I., Kanemaru, S., Tabata, Y., Ito, J.: Chronic vocal fold scar restoration with hepatocyte growth factor hydrogel. Laryngoscope 120(1), 108–113 (2010)

    Google Scholar 

  73. Hallen, L., Johansson, C., Laurent, C.: Cross-linked hyaluronan (hylan B gel): a new injectable remedy for treatment of vocal fold insufficiency - an animal study. Acta Otolaryngol. 119(1), 107–111 (1999)

    CAS  Google Scholar 

  74. Hertegard, S., Hallen, L., Laurent, C., Lindstrom, E., Olofsson, K., Testad, P., Dahlqvist, A.: Cross-linked hyaluronan used as augmentation substance for treatment of glottal insufficiency: Safety aspects and vocal fold function. Laryngoscope 112(12), 2211–2219 (2002)

    Google Scholar 

  75. Perazzo, P.S., Duprat Ade, C., Lancellotti, C.L.: Histological behavior of the vocal fold after hyaluronic acid injection. J. Voice 23(1), 95–98 (2009)

    Google Scholar 

  76. Lau, D.P., Lee, G.A., Wong, S.M., Lim, V.P., Chan, Y.H., Tan, N.G., Rammage, L.A., Morrison, M.D.: Injection laryngoplasty with hyaluronic acid for unilateral vocal cord paralysis. Randomized controlled trial comparing two different particle sizes. J. Voice 24(1), 113–118 (2010)

    Google Scholar 

  77. Campoccia, D., Doherty, P., Radice, M., Brun, P., Abatangelo, G., Williams, D.F.: Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19(23), 2101–2127 (1998)

    CAS  Google Scholar 

  78. Finck, C., Lefebvre, P.: Implantation of esterified hyaluronic acid in microdissected Reinke's space after vocal fold microsurgery: First clinical experiences. Laryngoscope 115(10), 1841–1847 (2005)

    CAS  Google Scholar 

  79. Prestwich, G.D.: Evaluating drug efficacy and toxicology in three dimensions: Using synthetic extracellular matrices in drug discovery. Acc. Chem. Res. 41(1), 139–148 (2008)

    CAS  Google Scholar 

  80. Shu, X.Z., Liu, Y., Palumbo, F.S., Luo, Y., Prestwich, G.D.: In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25(7–8), 1339–1348 (2004)

    CAS  Google Scholar 

  81. Shu, X.Z., Prestwich, G.D.: Therapeutic biomaterials from chemically modified hyaluronan. In: Garg, H.G., Hales, C.A. (eds.) Chemistry and Biology of Hyaluronan, pp. 475–504. Elsevier, Oxford (2004)

    Google Scholar 

  82. Prestwich, G.D., Kuo, J.: Chemically-modified HA for therapy and regenerative medicine. Curr. Pharm. Biotechnol. 9(4), 242–245 (2008)

    CAS  Google Scholar 

  83. Hansen, J.K., Thibeault, S.L., Walsh, J.F., Shu, X.Z., Prestwich, G.D.: In vivo engineering of the vocal fold extracellular matrix with injectable hyaluronic acid hydrogels: early effects on tissue repair and biomechanics in a rabbit model. Ann. Otol. Rhinol. Laryngol. 114(9), 662–670 (2005)

    Google Scholar 

  84. Duflo, S., Thibeault, S.L., Li, W., Shu, X.Z., Prestwich, G.D.: Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng. 12(8), 2171–2180 (2006)

    CAS  Google Scholar 

  85. Thibeault, S.L., Klemuk, S.A., Chen, X., QuinchiaJohnson, B.H.: In vivo engineering of the vocal fold ECM with injectable HA hydrogels-late effects on tissue repair and biomechanics in a rabbit model. J. Voice 25(2), 249–253 (2011)

    Google Scholar 

  86. Johnson, B.Q., Fox, R., Chen, X., Thibeault, S.: Tissue regeneration of the vocal fold using bone marrow mesenchymal stem cells and synthetic extracellular matrix injections in rats. Laryngoscope 120(3), 537–545 (2010)

    CAS  Google Scholar 

  87. Caton, T., Thibeault, S.L., Klemuk, S., Smith, M.E.: Viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: Implications for mucosal versus muscle use. Laryngoscope 117(3), 516–521 (2007)

    CAS  Google Scholar 

  88. Sahiner, N., Jha, A.K., Nguyen, D., Jia, X.Q.: Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J. Biomater. Sci. Polym. Ed. 19(2), 223–243 (2008)

    CAS  Google Scholar 

  89. Jia, X.Q., Colombo, G., Padera, R., Langer, R., Kohane, D.S.: Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials 25(19), 4797–4804 (2004)

    CAS  Google Scholar 

  90. Jha, A.K., Malik, M.S., Farach-Carson, M.C., Duncan, R.L., Jia, X.: Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 6(20), 5045–5055 (2010). doi:10.1039/c0sm00101e

    CAS  Google Scholar 

  91. Biondi, M., Ungaro, F., Quaglia, F., Netti, P.A.: Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60(2), 229–242 (2008)

    CAS  Google Scholar 

  92. Farach-Carson, M.C., Hecht, J.T., Carson, D.D.: Heparan sulfate proteoglycans: key players in cartilage biology. Crit. Rev. Eukaryot. Gene Expr. 15(1), 29–48 (2005)

    CAS  Google Scholar 

  93. Jha, A.K., Yang, W.D., Kirn-Safran, C.B., Farach-Carson, M.C., Jia, X.Q.: Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 30(36), 6964–6975 (2009)

    CAS  Google Scholar 

  94. Freshney, R.I., Obradovic, B., Grayson, W., Cannizzaro, C., Vunjak-Novakovic, G.: Principles of tissue culture and bioreactor design. In: Lonza, R., Langer, R., Vacanti, J. (eds.) Principles of Tissue Engineering. Academic, Burlington (2007)

    Google Scholar 

  95. Chen, X., Thibeault, S.L.: Biocompatibility of a synthetic extracellular matrix on immortalized vocal fold fibroblasts in 3-D culture. Acta Biomater. 6(8), 2940–2948 (2010)

    CAS  Google Scholar 

  96. Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)

    CAS  Google Scholar 

  97. Kutty, J.K., Cho, E., Lee, J.S., Vyavahare, N.R., Webb, K.: The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials 28(33), 4928–4938 (2007)

    CAS  Google Scholar 

  98. Luo, Y., Kobler, J.B., Zeitels, S.M., Langer, R.: Effects of growth factors on extracellular matrix production by vocal fold fibroblasts in 3-dimensional culture. Tissue Eng. 12(12), 3365–3374 (2006)

    CAS  Google Scholar 

  99. Chicurel, M.E., Chen, C.S., Ingber, D.E.: Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998)

    CAS  Google Scholar 

  100. Discher, D.E., Janmey, P., Wang, Y.-L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    CAS  Google Scholar 

  101. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    CAS  Google Scholar 

  102. Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7), 811–827 (2006)

    CAS  Google Scholar 

  103. Kung, C.: A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005)

    CAS  Google Scholar 

  104. Vrhovski, B., Weiss, A.S.: Biochemistry of tropoelastin. Eur. J. Biochem. 258(1), 1–18 (1998)

    CAS  Google Scholar 

  105. Gardinier, J.D., Majumdar, S., Duncan, R.L., Wang, L.Y.: Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts. Cell. Mol. Bioeng. 2(1), 133–143 (2009)

    CAS  Google Scholar 

  106. Lillie, M.A., Gosline, J.M.: The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 29(8–9), 1147–1160 (1990)

    CAS  Google Scholar 

  107. Jia, X.Q., Kiick, K.L.: Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9(2), 140–156 (2009)

    CAS  Google Scholar 

  108. Chen, X., Thibeault, S.L.: Novel isolation and biochemical characterization of immortalized fibroblasts for tissue engineering vocal fold lamina propria. Tissue Eng. Part C Methods 15(2), 201–212 (2009)

    CAS  Google Scholar 

  109. Kim, B.S., Nikolovski, J., Bonadio, J., Mooney, D.J.: Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotech. 17, 979–983 (1999)

    CAS  Google Scholar 

  110. Stamatas, G.N., McIntire, L.V.: Rapid flow-induced responses in endothelia cells. Biotechnol. Prog. 17, 383–402 (2001)

    CAS  Google Scholar 

  111. Caplan, A.I.: Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213(2), 341–347 (2007)

    CAS  Google Scholar 

  112. Jiang, Y.H., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J.B., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A., Verfaillie, C.M.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893), 41–49 (2002)

    CAS  Google Scholar 

  113. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R.: Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999)

    CAS  Google Scholar 

  114. Hertegard, S., Cedervall, J., Svensson, B., Forsberg, K., Maurer, F.H., Vidovska, D., Olivius, P., Ahrlund-Richter, L., Le Blanc, K.: Viscoelastic and histologic properties in scarred rabbit vocal folds after mesenchymal stem cell injection. Laryngoscope 116(7), 1248–1254 (2006)

    CAS  Google Scholar 

  115. Cedervall, J., Ahrlund-Richter, L., Svensson, B., Forsgren, K., Maurer, F.H., Vidovska, D., Hertegard, S.: Injection of embryonic stem cells into scarred rabbit vocal folds enhances healing and improves viscoelasticity: Short-term results. Laryngoscope 117(11), 2075–2081 (2007)

    Google Scholar 

  116. Chiquet, M., Renedo, A.S., Huber, F., Flück, M.: How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22(1), 73–80 (2003)

    CAS  Google Scholar 

  117. Brown, M.A., Iver, R.K., Radisic, M.: Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol. Prog. 24(4), 907–920 (2008)

    CAS  Google Scholar 

  118. Buschmann, M.D., Gluzband, Y.A., Grodzinsky, A.J., Hunziker, E.B.: Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(4), 1497–1508 (1995)

    CAS  Google Scholar 

  119. Kim, Y.-J., Bonassar, L.J., Grodzinsky, A.J.: The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28(9), 1055–1066 (1995)

    CAS  Google Scholar 

  120. Mauck, R.L., Soltz, M.A., Wang, C.C.B., Wong, D.D., Chao, P.H.G., Valhmu, W.B., Hung, C.T., Ateshian, G.A.: Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng.-Trans. ASME 122(3), 252–260 (2000)

    CAS  Google Scholar 

  121. Titze, I.R., Hitchcock, R.W., Broadhead, K., Webb, K., Li, W., Gray, S.D., Tresco, P.A.: Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37(10), 1521–1529 (2004)

    Google Scholar 

  122. Webb, K., Hitchcock, R.W., Smeal, R.M., Li, W.H., Gray, S.D., Tresco, P.A.: Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J. Biomech. 39(6), 1136–1144 (2006)

    Google Scholar 

  123. Titze, I.R., Broadhead, K., Tresco, P., Gray, S.: Strain distribution in an elastic substrate vibrated in a bioreactor for vocal fold tissue engineering. J. Biomech. 38(12), 2406–2414 (2005)

    CAS  Google Scholar 

  124. Jia, X., Jia, M., Jha, A.K., Farran, A.J.E., Tong, Z.: Dynamic vibrational method and device for vocal fold tissue growth, Non-provisional Patent Application, US 12/781,305, May 17, 2010

    Google Scholar 

  125. Kutty, J.K., Webb, K.: Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen. Med. 4(1), 62–72 (2010)

    CAS  Google Scholar 

  126. Place, E.S., Evans, N.D., Stevens, M.M.: Complexity in biomaterials for tissue engineering. Nat. Mater. 8(6), 457–470 (2009)

    CAS  Google Scholar 

  127. Huebsch, N., Mooney, D.J.: Inspiration and application in the evolution of biomaterials. Nature 462(7272), 426–432 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the US National Institutes of Health (National Institute on Deafness and Other Communication Disorders, National Center for Research Resources), the US National Science Foundation (Division of Materials Research, Biomaterials Program) and the University of Delaware Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiao Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farran, A.J.E., Tong, Z., Witt, R.L., Jia, X. (2012). Tissue Engineering Strategies for Vocal Fold Repair and Regeneration. In: Bhatia, S. (eds) Engineering Biomaterials for Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1080-5_10

Download citation

Publish with us

Policies and ethics