Skip to main content

Biomaterial Surfaces for the Isolation of Hematopoietic Stem and Progenitor Cells

  • Chapter
  • First Online:
Book cover Engineering Biomaterials for Regenerative Medicine

Abstract

Enrichment and purification of hematopoietic stem and progenitor cells (HSPCs) is important in basic research as well as in clinical transplantation of HSPCs. Currently, fluorescent-activated cell sorting (FACS) and immunomagnetic separation techniques are widely used for HSPC isolation. Although both methods offer relatively pure subpopulations, FACS can introduce potential sources of contamination and flow cytometers with high-speed sorting ability are prohibitively expensive for smaller laboratories. Immunomagnetic separation requires large amounts of starting material, involves several steps, and furthermore, cell-surface antibodies may prohibit cell proliferation and differentiation. Hence, development of simpler methods for the capture and purification of HSPCs are warranted. By exploiting the differential rolling behavior of CD34+ HSPCs from mature blood cells on selectins, we have developed a flow-based, adhesion molecule-mediated capture method, which may be a viable alternative approach to the isolation of HSPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnett, D., Janossy, G., Lubenko, A., et al.: Guideline for the flow cytometric enumeration of CD34+ haematopoietic stem cells. Prepared by the CD34+ haematopoietic stem cell working party. General Haematology Task Force of the British Committee for Standards in Haematology. Clin. Lab. Haematol. 21, 301–308 (1999)

    Article  CAS  Google Scholar 

  2. Servida, F., Soligo, D., Caneva, L., et al.: Functional and morphological characterization of immunomagnetically selected CD34+ hematopoietic progenitor cells. Stem Cells 14, 430–438 (1996)

    Article  CAS  Google Scholar 

  3. Cancelas, J.A., Querol, S., Martin-Henao, G., et al.: Isolation of hematopoietic progenitors. An appraoch to two different immunomagnetic methods at the lab scale. Pure Appl. Chem. 68, 1897–1901 (1996)

    Article  CAS  Google Scholar 

  4. Andrews, R.G., Singer, J.W., Bernstein, I.D.: Monoclonal antibody 12–8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood 67, 842–845 (1986)

    CAS  Google Scholar 

  5. Barnett, D., Granger, V., Storie, I., et al.: Quality assessment of CD34+ stem cell enumeration: experience of the United Kingdom National External Quality Assessment Scheme (UK NEQAS) using a unique stable whole blood preparation. Br. J. Haematol. 102, 553–565 (1998)

    Article  CAS  Google Scholar 

  6. Baum, C.M., Weissman, I.L., Tsukamoto, A.S., et al.: Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 89, 2804–2808 (1992)

    Article  CAS  Google Scholar 

  7. Civin, C., Banquerigo, M.L., Strauss, L.C., et al.: Antigenic analysis of hematopoiesis. VI. Flow cytometric characterization of My-10-positive progenitor cells in normal human bone marrow. Exp. Hematol. 15, 10–17 (1987)

    CAS  Google Scholar 

  8. Kondo, M., Wagers, A.J., Manz, M.G., et al.: Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003)

    Article  CAS  Google Scholar 

  9. Lanza, F., Healy, L., Sutherland, D.R.: Structural and functional features of the CD34 antigen: an update. J. Biol. Regul. Homeost. Agents 15, 1–13 (2001)

    CAS  Google Scholar 

  10. Oxley, S.M., Sackstein, R.: Detection of an L-selectin ligand on a hematopoietic progenitor cell line. Blood 84, 3299–3306 (1994)

    CAS  Google Scholar 

  11. Rosen, S.D.: Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. Am. J. Pathol. 155, 1013–1020 (1999)

    Article  CAS  Google Scholar 

  12. Cornetta, K., Gharpure, V., Mills, B., et al.: Rapid engraftment after allogeneic transplantation using CD34-enriched marrow cells. Bone Marrow Transplant. 21, 65–71 (1998)

    Article  CAS  Google Scholar 

  13. Lang, P., Schumm, M., Taylor, G., et al.: Clinical scale isolation of highly purified peripheral CD34 + progenitors for autologous and allogeneic transplantation in children. Bone Marrow Transplant. 24, 583–589 (1999)

    Article  CAS  Google Scholar 

  14. Pflumio, F., Izac, B., Katz, A., et al.: Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88, 3731–3740 (1996)

    CAS  Google Scholar 

  15. Manz, M.G., Miyamoto, T., Akashi, K., et al.: Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. USA 99, 11872–11877 (2002)

    Article  CAS  Google Scholar 

  16. Bhatia, M., Bonnet, D., Murdoch, B., et al.: A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. 4, 1038–1045 (1998)

    Article  CAS  Google Scholar 

  17. Benson Jr., D.M., Elder, P.J., Lin, T.S., et al.: High-dose melphalan versus busulfan, cyclophosphamide, and etoposide as preparative regimens for autologous stem cell transplantation in patients with multiple myeloma. Leuk. Res. 31, 1069–1075 (2007)

    Article  CAS  Google Scholar 

  18. Copelan, E.A.: Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006)

    Article  CAS  Google Scholar 

  19. Farag, S.S., Bolwell, B.J., Elder, P.J., et al.: High-dose busulfan, cyclophosphamide, and etoposide does not improve outcome of allogeneic stem cell transplantation compared to BuCy2 in patients with acute myeloid leukemia. Bone Marrow Transplant. 35, 653–661 (2005)

    Article  CAS  Google Scholar 

  20. Farag, S.S., Elder, P.J., Marcucci, G., et al.: Radiation-free regimens result in similar outcomes of allogeneic hematopoietic progenitor cell transplantation in patients aged > or = 50 years compared to younger adults with low-risk disease. Bone Marrow Transplant. 31, 87–93 (2003)

    Article  CAS  Google Scholar 

  21. Marks, D.I., Forman, S.J., Blume, K.G., et al.: A comparison of cyclophosphamide and total body irradiation with etoposide and total body irradiation as conditioning regimens for patients undergoing sibling allografting for acute lymphoblastic leukemia in first or second complete remission. Biol. Blood Marrow Transplant. 12, 438–453 (2006)

    Article  CAS  Google Scholar 

  22. Berenson, R.J., Andrews, R.G., Bensinger, W.I., et al.: Antigen CD34+ marrow cells engraft lethally irradiated baboons. J. Clin. Invest. 81, 951–955 (1988)

    Article  CAS  Google Scholar 

  23. Appelbaum, F.R.: The current status of hematopoietic cell transplantation. Annu. Rev. Med. 54, 491–512 (2003)

    Article  CAS  Google Scholar 

  24. Armitage, J.O.: Bone marrow transplantation. N. Engl. J. Med. 330, 827–838 (1994)

    Article  CAS  Google Scholar 

  25. Bertolini, F., de Vincentiis, A., Lanata, L., et al.: Allogeneic hematopoietic stem cells from sources other than bone marrow: biological and technical aspects. Haematologica 82, 220–238 (1997)

    CAS  Google Scholar 

  26. Wagner, J.E., Barker, J.N., DeFor, T.E., et al.: Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100, 1611–1618 (2002)

    CAS  Google Scholar 

  27. Barker, J.N., Davies, S.M., DeFor, T., et al.: Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood 97, 2957–2961 (2001)

    Article  CAS  Google Scholar 

  28. Bittencourt, H., Rocha, V., Chevret, S., et al.: Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA identical sibling bone marrow transplantation. Blood 99, 2726–2733 (2002)

    Article  CAS  Google Scholar 

  29. Guardiola, P., Pasquini, R., Dokal, I., et al.: Outcome of 69 allogeneic stem cell transplantations for Fanconi anemia using HLA-matched unrelated donors: a study on behalf of the European Group for Blood and Marrow Transplantation. Blood 95, 422–429 (2000)

    CAS  Google Scholar 

  30. Elmaagacli, A.H., Peceny, R., Steckel, N., et al.: Outcome of transplantation of highly purified peripheral blood CD34+ cells with T-cell add-back compared with unmanipulated bone marrow or peripheral blood stem cells from HLA-identical sibling donors in patients with first chronic phase chronic myeloid leukemia. Blood 101, 446–453 (2003)

    Article  CAS  Google Scholar 

  31. Bunin, N., Aplenc, R., Leahey, A., et al.: Outcomes of transplantation with partial T-cell depletion of matched or mismatched unrelated or partially matched related donor bone marrow in children and adolescents with leukemias. Bone Marrow Transplant. 35, 151–158 (2005)

    Article  CAS  Google Scholar 

  32. Farag, S.S.: Chronic graft-versus-host disease: where do we go from here? Bone Marrow Transplant. 33, 569–577 (2004)

    Article  CAS  Google Scholar 

  33. Damiani, D., Sperotto, A., Geromin, A., et al.: Impact of CD34 cell dose on acute graft versus host disease after allogeneic bone marrow stem cell transplantation. Leuk. Lymphoma 43, 2245–2247 (2002)

    Article  Google Scholar 

  34. Lemoli, R.M., Cavo, M., Fortuna, A.: Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of patients with multiple myeloma. J. Hematother. 5, 339–349 (1996)

    Article  CAS  Google Scholar 

  35. Lowdell, M.W., Theocharous, P.: "Less is More": The Role of Purging in Hematopoietic Stem Cell Transplantation. Oncologist 2, 268–274 (1997)

    Google Scholar 

  36. Bensinger, W., Singer, J., Appelbaum, F., et al.: Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 81, 3158–3163 (1993)

    CAS  Google Scholar 

  37. Catley, L., Anderson, K.: Strategies to improve the outcome of stem cell transplantation in multiple myeloma. Hematol. J. 5, 9–23 (2004)

    Article  Google Scholar 

  38. Waller, C.F., Bertz, H., Wenger, M.K., et al.: Mobilization of peripheral blood progenitor cells for allogeneic transplantation: efficacy and toxicity of a high-dose rhG-CSF regimen. Bone Marrow Transplant. 18, 279–283 (1996)

    CAS  Google Scholar 

  39. Sackstein, R.: The Bone Marrow Is Akin to Skin: HCELL and the Biology of Hematopoietic Stem Cell Homing. J. Inv. Derm. 122, 1061–1069 (2004)

    CAS  Google Scholar 

  40. Whetton, A.D., Graham, G.J.: Homing and mobilization in the stem cell niche. Trends Cell Biol. 9, 233–238 (1999)

    Article  CAS  Google Scholar 

  41. Peled, A., Kollet, O., Ponomaryov, T., et al.: The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000)

    CAS  Google Scholar 

  42. Chavakis, E., Urbich, C., Dimmeler, S.: Homing and engraftment of progenitor cells: A prerequisite for cell therapy. J. Mol. Cell Cardiol. 45, 514–522 (2008)

    Article  CAS  Google Scholar 

  43. Frenette, P.S., Subbarao, S., Mazo, I.B., et al.: Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl Acad. Sci. USA 95, 14423–14428 (1998)

    Article  CAS  Google Scholar 

  44. Nilsson, S.K., Simmons, P.J.: Transplantable stem cells: home to specific niches. Curr. Opin. Hematol. 11, 102–106 (2004)

    Article  Google Scholar 

  45. Orfao, A., Ruiz-Arguelles, A.: General Concepts About Cell Sorting Techniques. Clin. Biochem. 29, 5–9 (1996)

    Article  CAS  Google Scholar 

  46. Stella, C.C., Cazzola, M., De Fabritiis, P., et al.: CD34-positive cells: biology and clinical relevance. Haematologica 80, 367–387 (1995)

    CAS  Google Scholar 

  47. Ibrahim, S.F., van den Engh, G.: High-speed cell sorting: fundamentals and recent advances. Curr. Opin. Biotechnol. 14, 5–12 (2003)

    Article  CAS  Google Scholar 

  48. Chalmers, J.J., Zborowski, M., Sun, L., et al.: Flow through, immunomagnetic cell separation. Biotechnol. Prog. 14, 141–148 (1998)

    Article  CAS  Google Scholar 

  49. Johnsen, H.E., Hutchings, M., Taaning, E., et al.: Selective loss of progenitor subsets following clinical CD34+ cell enrichment by magnetic field, magnetic beads or chromatography separation. Bone Marrow Transplant. 24, 1329–1336 (1999)

    Article  CAS  Google Scholar 

  50. Hildebrandt, M., Serke, S., Meyer, O., et al.: Immunomagnetic selection of CD34+ cells: factors influencing component purity and yield. Transfusion 40, 507–512 (2000)

    Article  CAS  Google Scholar 

  51. Martin-Henao, G.A., Picon, M., Amill, B., et al.: Isolation of CD34+ progenitor cells from peripheral blood by use of an automated immunomagnetic selection system: factors affecting the results. Transfusion 40, 35–43 (2000)

    Article  CAS  Google Scholar 

  52. de Wynter, E.A., Ryder, D., Lanza, F., et al.: Multicentre European study comparing selection techniques for the isolation of CD34+ cells. Bone Marrow Transplant. 23, 1191–1196 (1999)

    Article  Google Scholar 

  53. Firat, H., Giarratana, M.C., Kobari, L., et al.: Comparison of CD34+ bone marrow cells purified by immunomagnetic and immunoadsorption cell separation techniques. Bone Marrow Transplant. 21, 933–938 (1998)

    Article  CAS  Google Scholar 

  54. Miltenyi, S., Muller, W., Weichel, W., et al.: High gradient magnetic cell separation with MACS. Cytometry 11, 231–238 (1990)

    Article  CAS  Google Scholar 

  55. Storms, R.W., Goodell, M.A., Fisher, A., et al.: Hoechst dye efflux reveals a novel CD7(+)CD34(−) lymphoid progenitor in human umbilical cord blood. Blood 96, 2125–2133 (2000)

    CAS  Google Scholar 

  56. Smith, C.: Hematopoietic stem cells and hematopoiesis. Cancer Control 10, 9–16 (2003)

    Google Scholar 

  57. Goodell, M.A., Rosenzweig, M., Kim, H., et al.: Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337–1345 (1997)

    Article  CAS  Google Scholar 

  58. Gallacher, L., Murdoch, B., Wu, D.M., et al.: Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95, 2813–2820 (2000)

    CAS  Google Scholar 

  59. Kuci, S., Wessels, J.T., Buhring, H.J., et al.: Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells. Blood 101, 869–876 (2003)

    Article  CAS  Google Scholar 

  60. Miraglia, S., Godfrey, W., Yin, A.H., et al.: A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013–5021 (1997)

    CAS  Google Scholar 

  61. de Wynter, E.A., Buck, D., Hart, C., et al.: CD34 + AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 16, 387–396 (1998)

    Article  Google Scholar 

  62. Yin, A.H., Miraglia, S., Zanjani, E.D., et al.: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997)

    CAS  Google Scholar 

  63. Handgretinger, R., Gordon, P.R., Leimig, T., et al.: Biology and plasticity of CD133+ hematopoietic stem cells. Ann. NY Acad. Sci. 996, 141–151 (2003)

    Article  CAS  Google Scholar 

  64. Guo, Y., Lubbert, M., Engelhardt, M.: CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells 21, 15–20 (2003)

    Article  CAS  Google Scholar 

  65. Andrews, R.G., Singer, J.W., Bernstein, I.D.: Human hematopoietic precursors in long-term culture: single CD34+ cells that lack detectable T cell, B cell, and myeloid cell antigens produce multiple colony forming cells when cultured with marrow stromal cells. J. Exp. Med. 172, 355–358 (1990)

    Article  CAS  Google Scholar 

  66. Leary, A.G., Ogawa, M., Strauss, L.C., et al.: Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes. J. Clin. Invest. 74, 2193–2197 (1984)

    Article  CAS  Google Scholar 

  67. Kernan, N.A., Bordignon, C., Heller, G., et al.: Graft failure after T-celldepleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants. Blood 74, 2227–2236 (1989)

    CAS  Google Scholar 

  68. Keever, C.A., Small, T.N., Flomenberg, N., et al.: Immune reconstitution following bone marrow transplantation: comparison of recipients of Tcell depleted marrow with recipients of conventional marrow grafts. Blood 73, 1340–1350 (1989)

    CAS  Google Scholar 

  69. Martinez, C., Urbano-Ispizua, A., Rozman, C., et al.: Immune reconstitution following allogeneic peripheral blood progenitor cell transplantation: comparison of recipients of positive CD34+ selected grafts with recipients of unmanipulated grafts. Exp. Hematol. 27, 561–568 (1999)

    Article  CAS  Google Scholar 

  70. Daley, J.P., Rozans, M.K., Smith, B.R., et al.: Retarded recovery of functional T cell frequencies in T cell-depleted bone marrow transplant recipients. Blood 70, 960–964 (1987)

    CAS  Google Scholar 

  71. Martino, R., Rovira, M., Carreras, E., et al.: Severe infections after allogeneic peripheral blood stem cell transplantation: a matched-pair comparison of unmanipulated and CD34+ cell-selected transplantation. Haematologica 86, 1075–1086 (2001)

    CAS  Google Scholar 

  72. Crippa, F., Holmberg, L., Carter, R.A., et al.: Infectious complications after autologous CD34-selected peripheral blood stem cell transplantation. Biol. Blood Marrow Transplant. 8, 281–289 (2002)

    Article  Google Scholar 

  73. Negrin, R.S., Atkinson, K., Leemhuis, T., et al.: Transplantation of highly purified CD34 + Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biol. Blood Marrow Transplant. 6, 262–271 (2000)

    Article  CAS  Google Scholar 

  74. Hidalgo, A., Weiss, L.A., Frenette, P.S.: Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J. Clin. Invest. 110, 559–569 (2002)

    CAS  Google Scholar 

  75. Geng, J.G., Chen, M., Chou, K.C.: P-selectin cell adhesion molecule in inflammation, thrombosis, cancer growth and metastasis. Curr. Med. Chem. 11, 2153–2160 (2004)

    Article  CAS  Google Scholar 

  76. McEver, R.P.: Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002)

    Article  CAS  Google Scholar 

  77. Konstantopoulos, K., Kukreti, S., McIntire, L.V.: Biomechanics of cell interactions in shear fields. Adv. Drug Deliv. Rev. 33, 141–164 (1998)

    Article  CAS  Google Scholar 

  78. Kansas, G.S.: Selectins and their ligands: current concepts and controversies. Blood 88, 3259–3287 (1996)

    CAS  Google Scholar 

  79. Alon, R., Feizi, T., Yuen, C.T., et al.: Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J. Immunol. 154, 5356–5366 (1995)

    CAS  Google Scholar 

  80. Geng, J.G., Heavner, G.A., McEver, R.P.: Lectin domain peptides from selectins interact with both cell surface ligands and Ca2+ ions. J. Biol. Chem. 267, 19846–19853 (1992)

    CAS  Google Scholar 

  81. Hidalgo, A., Frenette, P.S.: Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood 105, 567–575 (2005)

    Article  CAS  Google Scholar 

  82. Moore, K.L., Eaton, S.F., Lyons, D.E., et al.: The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, Olinked poly-N-acetyllactosamine. J. Biol. Chem. 269, 23318–23327 (1994)

    CAS  Google Scholar 

  83. Greenberg, A.W., Kerr, W.G., Hammer, D.A.: Relationship between selectin mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development. Blood 95, 478–486 (2000)

    CAS  Google Scholar 

  84. Greenberg, A.W., Hammer, D.A.: Cell separation mediated by differential rolling adhesion. Biotechnol. Bioeng. 73, 111–124 (2001)

    Article  CAS  Google Scholar 

  85. Charles, N., Liesveld, J.L., King, M.R.: Investigating the feasibility of stem cell enrichment mediated by immobilized selectins. Biotechnol. Prog. 23, 1463–1472 (2007)

    Article  CAS  Google Scholar 

  86. Narasipura, S.D., Wojciechowski, J.C., Charles, N., et al.: P-selectin-coated microtube for enrichment of CD341 hematopoietic stem and progenitor cells from human bone marrow. Clin. Chem. 54, 77–85 (2008)

    Article  CAS  Google Scholar 

  87. Wojciechowski, J.C., Narasipura, S.D., Charles, N., et al.: Capture and enrichment of CD34-positive haematopoietic stem and progenitor cells from blood circulation using P-selectin in an implantable device. Br. J. Haematol. 140, 673–681 (2008)

    Article  Google Scholar 

  88. Narasipura, S.D., Wojciechowski, J.C., Duffy, B.M., et al.: Purification of CD45+ hematopoietic cells directly from human bone marrow using a flow-based P-selectin-coated microtube. Am. J. Hematol. 83, 627–629 (2008)

    Article  Google Scholar 

  89. Narasipura, S.D., King, M.R.: P-selectin-coated microtube for the purification of CD45+ ematopoietic cells directly from human peripheral blood. Blood Cells Mol. Dis. 42, 136–139 (2009)

    Article  CAS  Google Scholar 

  90. Rana, K., Liesveld, J.L., King, M.R.: Delivery of apoptotic signal to rolling cancer cells: a novel biomimetic technique using immobilized TRAIL and E-selectin. Biotechnol. Bioeng. 102, 1692–1702 (2009)

    Article  CAS  Google Scholar 

  91. Han, W., Allio, B.A., Foster, D.G., et al.: Nanoparticle coatings for enhanced capture of flowing cells in microtubes. ACS Nano 4, 174–180 (2010)

    Article  CAS  Google Scholar 

  92. Hughes, A.D., King, M.R.: Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir 26, 12155–12164 (2010)

    Article  CAS  Google Scholar 

  93. Huang, Z., King, M.R.: An immobilized nanoparticle-based platform for efficient gene knockdown of targeted cells in the circulation. Gene Ther. 16, 1271–1282 (2009)

    Article  CAS  Google Scholar 

  94. Martin, P.J., Hansen, J.A., Buckner, C.D., et al.: Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 66, 664–672 (1985)

    CAS  Google Scholar 

  95. Horowitz, M.M., Gale, R.P., Sondel, P.M., et al.: Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990)

    CAS  Google Scholar 

  96. Holmberg, L.A., Boeckh, M., Hooper, H., et al.: Increased incidence of cytomegalovirus disease after autologous CD34-selected peripheral blood stem cell transplantation. Blood 94, 4029–4035 (1999)

    CAS  Google Scholar 

  97. Hong, S., Lee, D., Zhang, H., et al.: Covalent immobilization of p-selectin enhances cell rolling. Langmuir 23, 12261–12268 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Narasipura, S.D., King, M.R. (2012). Biomaterial Surfaces for the Isolation of Hematopoietic Stem and Progenitor Cells. In: Bhatia, S. (eds) Engineering Biomaterials for Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1080-5_1

Download citation

Publish with us

Policies and ethics