Skip to main content

Radar Arrays for Vehicle Applications

  • Chapter
  • First Online:
Antenna Arrays and Automotive Applications

Abstract

Rapid progress in radar technology has a direct impact on the design issues of high performance systems. Radar performs well in all weather conditions and, therefore, is utilized in a variety of applications: short- and long-range automotive radars (SRR and LRR), traffic monitoring, the automotive radars for intelligent cruise control, etc. Some of these applications are demonstrated in Fig. 1.3a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozkurt C, Camci F (2009) Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural networks. Math Comput Appl 14(3):187–196

    Google Scholar 

  2. Shefer J et al (1974) Clutter-free radar for cars. Wireless World, pp 117–122

    Google Scholar 

  3. Palubinskas G et al (2004) Radar signatures of road vehicles. In: 2004 IEEE international geoscience and remote sensing symposium proceedings, pp 1498–1501

    Google Scholar 

  4. Palubinskas G, Runge H (2007) Radar signatures of a passenger car. Geosci Remote Sensing Lett, IEEE, pp 644–648

    Google Scholar 

  5. Palubinskas G et al (2005) Radar signatures of road vehicles: airborne SAR experiments, SAR image analysis, modeling and techniques. In: Francesko Posa X (ed.) Proceedings of SPIE, vol 5980

    Google Scholar 

  6. Gresham I et al (2004) Ultra-wide radar sensors for short-range vehicular applications. IEEE Trans Microw Theory Tech 52(9):2105–2121

    Article  Google Scholar 

  7. Feng X et al (2010) K-band micro-strip antenna array applied in anti-collision radar. IEEE international conference, Communication Technology (ICCT), pp 1240–1243

    Google Scholar 

  8. Colburn J et al (2007) Multifunction aperture for vehicular radar integration. IEEE vehicular technology conference, pp 2042–2046

    Google Scholar 

  9. Beer S et al (2010) Planar Yagi-Uda antenna array for W-band automotive radar applications. Antennas and propagation society international symposium, IEEE

    Google Scholar 

  10. Beer S et al (2009) Novel antenna concept for compact millimeter-wave automotive radar sensors. IEEE Antennas Wirel Propag Lett 8:771–774

    Article  Google Scholar 

  11. Huguenin G, Moore E (1997) Compact microwave and millimeter wave radar. US Patent 5,455,589, Publication 1995 and 5,680,139, Publication 1997

    Google Scholar 

  12. Greshman I et al (2001) A compact manufacturable 76–77 GHz radar module for commercial acc applications. IEEE Trans Microw Theory Tech 49(1):44–57

    Article  Google Scholar 

  13. Menzel W et al (2002) Millimeter-wave folded reflector antennas with high gain, low loss, and low profile. IEEE Trans Antennas Propag 44(3):24029

    Google Scholar 

  14. Pozar D et al (1997) Design of millimeter wave microstrip reflectarrays. IEEE Trans Antennas Propag 45(2):287–296

    Article  Google Scholar 

  15. Wenig P, Weigel R (2008) Analysis of a microstrip patch array fed cylindric lens antenna for 77 GHz automotive radar. Antennas and propagation society international symposium, IEEE

    Google Scholar 

  16. Freese J et al (2000) Synthesis of microstrip series-fed patch arrays for 77 GHz-sensor applications. Asia Pacific microwave conference, pp 29–33

    Google Scholar 

  17. Wenig P et al (2008) A dielectric lens antenna for digital beamforming and superresolution DOA estimation in 77 GHz automotive radar. International ITG workshop on smart antennas, pp 184–189

    Google Scholar 

  18. Richer M et al (2010) 77 GHz automotive beamforming radar with SiGe chipset. German microwave conference 2010, pp 210–213

    Google Scholar 

  19. Rotman W, Turner R (1963) Wide angle microwave lens for line source applications. IEEE Trans Antennas Propag 11:623–632

    Article  Google Scholar 

  20. Schoebel J et al (2005) Design considerations and technology assessment of phased-array antenna systems with RF MEMS for automotive radar applications. IEEE Trans Microw Theory Tech 53(6):1968–1975

    Article  Google Scholar 

  21. Klein LA (2001) Sensor technologies and data requirements for ITS. Artech House ITS Library, Norwood

    Google Scholar 

  22. Bullock D, Heymsfield E (December 1998) Innovative application of directional boring procedures for replacing inductive loop detectors. Autom Constr 8(2):143–148

    Article  Google Scholar 

  23. Ingo RM (1989) Application of machine vision to traffic monitoring and control. IEEE Trans Veh Technol 38:112–122

    Article  Google Scholar 

  24. Kastrinaki V, Zervakis M, Kalaitzakis K (2003) A survey of video processing techniques for traffic applications. Image Vis Comput 21:359–381

    Google Scholar 

  25. Huan Y et al (2005) A high-range- resolution microwave radar system for traffic flow rate measurement. In: Proceedings of the 8th international IEEE conference on intelligent transportation systems, pp 880–885

    Google Scholar 

  26. Zhang H et al (2008) A novel method for background suppression in millimeter-wave traffic radar sensor, In: Proceedings of the 8th international IEEE conference on intelligent transportation systems, pp 699–704

    Google Scholar 

  27. Zhang H et al (2008) Adaptive traffic lane detection based on normalized power accumulation. In: Proceedings of the 8th international IEEE conference on intelligent transportation systems, pp 968–973

    Google Scholar 

  28. Arnold D et al (2010) Systems and methods for monitoring speed. US Patent 742450, Publication Date 2008

    Google Scholar 

  29. Wang P et al (2010) FMCW radar imaging with multi-channel antenna array via sparce recovery technique. International conference, Electrical and Control Engineering 2010, pp 1018–1021

    Google Scholar 

  30. Lee M, Kim Y (2010) Design and Performance of a 24-GHz switch-antenna array FMCW Radar system for automotive applications. IEEE Trans Veh Technol 59(5):2290–2297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Rabinovich .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rabinovich, V., Alexandrov, N. (2013). Radar Arrays for Vehicle Applications. In: Antenna Arrays and Automotive Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1074-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1074-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1073-7

  • Online ISBN: 978-1-4614-1074-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics