Skip to main content

Female Age of First Reproduction at Cayo Santiago: Heritability and Shared Environments

  • Chapter
  • First Online:
Bones, Genetics, and Behavior of Rhesus Macaques

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Sexual maturation is a major transition in mammalian life histories including relatively long-lived, late-maturing primates. Age of first reproduction (AFR) in female primates is widely documented to vary among population members and to correlate with population density and social dominance. Research with Cayo Santiago macaques was among the first to identify these patterns. While explanations for variation in female AFR have centered around priority of access to limited resources and avoidance of stress, less attention has been drawn to potential genetic variation for AFR. Furthermore, the “dual inheritance” of genes and dominance rank in nepotistic female macaques implies these effects may be confounded. Heritability estimates for AFR at Cayo Santiago are small (≈0.15), but significantly greater than zero implicating genetic variation in this life history trait. However, predicted breeding values for AFR are randomly distributed among rank-levels, which points to common environmental effects, rather than inter-matriline genetic differences, as the primary causes of rank-related variation in AFR. In addition, interannual variation in population density, climate, and colony management also result in strong cohort effects on AFR. Maternal identity explained no variance in AFR, although some maternal characteristics do influence AFR, which requires greater clarity in describing the presence or absence of maternal effects on this important life history trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altmann J, Alberts SC (2005) Growth rates in a wild primate population: ecological influences and maternal effects. Behav Ecol Sociobiol 57:490–501

    Article  Google Scholar 

  • Altmann J, Hausfater G, Altmann SA (1988) Determinants of reproductive success in savannah baboons, Papio cynocephalus. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 405–418

    Google Scholar 

  • Atchley WR (1984) Ontogeny, timing of development, and genetic variance-covariances structure. Am Nat 123:519–540

    Article  Google Scholar 

  • Bercovitch FB, Berard JD (1993) Life history costs and consequences of rapid reproductive maturation in female rhesus macaques. Behav Ecol Sociobiol 32:103–109

    Article  Google Scholar 

  • Bercovitch FB, Lebron MR, Martinez HS, Kessler MJ (1998) Primigravidity, body weight, and costs of rearing first offspring in rhesus macaques. Am J Primatol 46:135–144

    Article  PubMed  CAS  Google Scholar 

  • Bercovitch FB, Widdig A, Nurnberg P (2000) Maternal investment in rhesus macaques (Macaca mulatta): reproductive costs and consequences of raising sons. Behav Ecol Sociobiol 48:1–11

    Article  Google Scholar 

  • Bijma P (2006) Estimating maternal genetic effects in livestock. J Anim Sci 84:800–806

    PubMed  CAS  Google Scholar 

  • Blomquist GE (2009a) Environmental and genetic causes of maturational differences among rhesus macaque matrilines. Behav Ecol Sociobiol 63:1345–1352

    Article  Google Scholar 

  • Blomquist GE (2009b) Fitness-related patterns of genetic variation in rhesus macaques. Genetica 135:209–129

    Article  PubMed  Google Scholar 

  • Blomquist GE (2009c) Trade-off between age of first reproduction and survival in a female primate. Biol Lett 5:339–342

    Article  PubMed  Google Scholar 

  • Broadhurst PL, Jinks JL (1965) Parity as a determinant of birth weight in the rhesus monkey. Folia Primatol (Basel) 3:201–210

    Article  CAS  Google Scholar 

  • Chapais B (2004) How kinship generates dominance structures: a comparative perspective. In: Thierry B, Singh M, Kaumanns W (eds) Macaque societies: a model for the study of social organization. Cambridge University Press, New York, pp 3–10

    Google Scholar 

  • Charnov EL, Berrigan D (1993) Why do female primates have such long lifespans and so few babies? or life in the slow lane. Evol Anthropol 1:191–194

    Article  Google Scholar 

  • Charpentier MJE, Tung J, Altmann J, Alberts SC (2008) Age at maturity in wild baboons: genetic, environmental and demographic influences. Mol Ecol 17:2026–2040

    Article  PubMed  CAS  Google Scholar 

  • Cheney DL, Seyfarth RM, Andelman SJ, Lee PC (1988) Reproductive success in vervet monkeys. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 384–402

    Google Scholar 

  • Cheverud JM (1981) Variation in highly and lowly heritable morphological traits among social groups of rhesus macaques (Macaca mulatta) on Cayo Santiago. Evolution 35:75–83

    Article  Google Scholar 

  • Cheverud JM (1982) Phenotypic, genetic, and environmental morphological integration in the ­cranium. Evolution 36:499–516

    Article  Google Scholar 

  • Cheverud JM, Buikstra JE (1981a) Quantitative genetics of skeletal nonmetric traits in the rhesus macaques on Cayo Santiago. I. Single trait heritabilities. Am J Phys Anthropol 54:43–49

    Article  PubMed  CAS  Google Scholar 

  • Cheverud JM, Buikstra JE (1981b) Quantitative genetics of skeletal nonmetric traits in the rhesus macaques on Cayo Santiago. II. Phenotypic, genetic, and environmental correlations between traits. Am J Phys Anthropol 54:51–8

    Article  PubMed  CAS  Google Scholar 

  • Cheverud JM, Dittus WPJ (1992) Primate population studies at Polonnaruwa II. Heritability of body measurements in a natural population of toque macaques. Am J Primatol 27:145–156

    Article  Google Scholar 

  • Cheverud JM, Falk D, Vannier M, Konigsberg L, Helmkamp RC, Hildebolt C (1990) Heritability of brain size and surface features in rhesus macaques (Macaca mulatta). J Hered 81:51–57

    PubMed  CAS  Google Scholar 

  • Cheverud JM, Routman E, Jaquish CE, Tardif S, Peterson G, Belfiore N, Forman L (1994) Quantitative and molecular genetic variation in captive cotton-top tamarins (Saguinus oedipus). Conserv Biol 8:95–105

    Article  Google Scholar 

  • Cheverud JM, Moore AJ (1994) Quantitative genetics and the role of the environment provided by relatives in behavioral evolution. In: Boake CRB (ed) Quantitative genetic studies of behavioral evolution. University of Chicago Press, Chicago, pp 67–100

    Google Scholar 

  • Cheverud JM, Wolf JB (2009) The genetics and evolutionary consequences of maternal effects. In: Maestripieri D, Mateo JM (eds) Maternal effects in mammals. University of Chicago Press, Chicago, pp 11–37

    Google Scholar 

  • Coster A (2008) Pedigree: pedigree functions. R package version 1.1

    Google Scholar 

  • Datta SB, Beauchamp G (1991) Effects of group demography on dominance relationships among female primates. I. Mother-daughter and sister-sister relations. Am Nat 138:201–226

    Article  Google Scholar 

  • Datta SB (1983a) Relative power and the acquisition of rank. In: Hinde RA (ed) Primate social relationships: an integrated approach. Sinauer Associates, Sunderland, MA, pp 93–103

    Google Scholar 

  • Datta SB (1983b) Relative power and the maintenance of dominance. In: Hinde RA (ed) Primate social relationships: an integrated approach. Sinauer Associates, Sunderland, MA, pp 103–112

    Google Scholar 

  • Drickamer LC (1974) A ten-year summary of reproductive data for free-ranging Macaca mulatta. Folia Primatol (Basel) 21:61–80

    Article  CAS  Google Scholar 

  • Ellis L (1995) Dominance and reproductive success among nonhuman animals: a cross-species comparison. Ethol Sociobiol 16:257–333

    Article  Google Scholar 

  • Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheldon BC (2005) Evolution driven by differential dispersal within a wild bird population. Nature 433:60–65

    Article  PubMed  CAS  Google Scholar 

  • Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 454–471

    Google Scholar 

  • Hallgrímsson B, Willmore K, Hall BK (2002) Canalization, developmental stability, and morphological integration in primate limbs. Am J Phys Anthropol 45:181–158

    Google Scholar 

  • Harcourt AH (1987) Dominance and fertility among female primates. J Zool 213:471–487

    Article  Google Scholar 

  • Hrdy SB (1999) Mother nature: a history of mothers, infants, and natural selection. Pantheon Books, New York

    Google Scholar 

  • Jaquish CE, Cheverud JM, Tardif SD (1996) Genetic and environmental impacts on litter size and early infant survival in three species of callitrichids. J Hered 87:74–77

    PubMed  CAS  Google Scholar 

  • Kappeler PM, Pereira ME (2003) Primate life histories and socioecology. University of Chicago Press, Chicago

    Google Scholar 

  • Kawai M (1965) On the system of social ranks in a natural troop of Japanese monkeys. I. Basic rank and dependent rank. In: Imanishi K, Altmann SA (eds) Japanese monkeys. Altmann, Chicago, pp 66–86

    Google Scholar 

  • Kawamura S (1965) Matriarchal social ranks in the Mino-B troop: a study of the rank system of the Japanese monkeys. In: Imanishi K, Altmann SA (eds) Japanese monkeys. Altmann, Chicago, pp 105–112

    Google Scholar 

  • Keller LF, Grant PR, Grant BR, Petren K (2001) Heritability of morphological traits in Darwin’s finches: misidentified paternity and maternal effects. Heredity 87:325–336

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BW, Trus D (1993) Considerations on genetic connectedness between management units under an animal model. J Dairy Sci 71:2341–2352

    CAS  Google Scholar 

  • Kirk KM, Blomberg SP, Duffy DL, Heath AC, Owens IP, Martin NG (2001) Natural selection and quantitative genetics of life-history traits in Western women: a twin study. Evolution 55:423–435

    PubMed  CAS  Google Scholar 

  • Koenig A (2002) Competition for resources and its behavioral consequences among female ­primates. Int J Primatol 23:759–783

    Article  Google Scholar 

  • Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703

    Article  PubMed  CAS  Google Scholar 

  • Kruuk LEB, Hadfield JD (2007) How to separate genetic and environmental causes of similarity between relatives. J Evol Biol 20:1890–1903

    Article  PubMed  CAS  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B Biol Sci 359:873–890

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Maestripieri D (2009) Maternal influences on offspring growth, reproduction, and behavior in primates. In: Maestripieri D, Mateo JM (eds) Maternal effects in mammals. University of Chicago Press, Chicago, pp 256–291

    Google Scholar 

  • Maestripieri D, Mateo JM (eds) (2009) Maternal effects in mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Martin LJ, Mahaney MC, Bronikowski AM, Dee CK, Dyke B, Comuzzie AG (2002) Lifespan in captive baboons is heritable. Mech Ageing Dev 123:1461–1467

    Article  PubMed  Google Scholar 

  • McGrath J, Cheverud JM, Buikstra JE (1984) Genetic correlations between sides and heritability of asymmetry for nonmetric traits in rhesus macaques on Cayo Santiago. Am J Phys Anthropol 64:401–411

    Article  PubMed  CAS  Google Scholar 

  • Meyer K (2007) WOMBAT: a tool for mixed model analyses in quantitative genetics by REML. J Zhejiang Univ Sci B 8:815–821

    Article  PubMed  Google Scholar 

  • Missakian EA (1972) Genealogical and cross-genealogical dominace relations in a group of free-ranging rhesus monkeys (Macaca mulatta). Primates 13:169–180

    Article  Google Scholar 

  • Mrode RA (1996) Linear models for the prediction of animal breeding values, 1st edn. CAB Publishing, Wallingford, UK

    Google Scholar 

  • Nurnberg P, Saurmann U, Kayser M, Lanfer C, Manz E, Widdig A, Berard J, Bercovitch FB, Kessler M, Schmidtke J, Krawczak M (1998) Paternity assessment in rhesus macaques (Macaca mulatta): multilocus DNA fingerprinting and PCR marker typing. Am J Primatol 44:1–18

    Article  PubMed  CAS  Google Scholar 

  • Packer C, Collins DA, Sindimwo A, Goodall J (1995) Reproductive constraints on aggressive competition in female baboons. Nature 373:60–63

    Article  PubMed  CAS  Google Scholar 

  • Pettay JI, Kruuk LEB, Jokela J, Lummaa V (2005) Heritability and genetic constraints of life-history trait evolution in preindustrial humans. Proc Natl Acad Sci USA 102:2838–2843

    Article  PubMed  CAS  Google Scholar 

  • Postma E (2006) Implications of the difference between true and predicted breeding values for the study of natural selection and micro-evolution. J Evol Biol 19:309–320

    Article  PubMed  CAS  Google Scholar 

  • Postma E, Charmantier A (2007) What ‘animal models’ can tell ornithologists about the genetics of wild populations. J Ornithol 148:S633–S642

    Article  Google Scholar 

  • Price T, Schluter D (1991) On the low heritability of life history traits. Evolution 45:853–861

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rawlins RG, Kessler MJ (1985) Climate and seasonal reproduction in the Cayo Santiago macaques. Am J Primatol 9:87–99

    Article  Google Scholar 

  • Rawlins RG, Kessler MJ (1986) The history of the Cayo Santiago colony. In: Rawlins RG, Kessler MJ (eds) The Cayo Santiago macaques: history, behavior, and ecology. State University of New York Press, Albany, pp 47–72

    Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman and Hall, New York

    Book  Google Scholar 

  • Roff DA, Mouseau TA (1987) Quantitative genetics of fitness: lessons from Drosophila. Heredity 58:103–118

    Article  PubMed  Google Scholar 

  • Ross C (1988) The intrinsic rate of increase and reproductive effort in primates. J Zool 214:199–219

    Article  Google Scholar 

  • Sade DS (1990) Intrapopulation variation in life-history parameters. In: DeRousseau C (ed) Primate life history and evolution. Wiley-Liss, New York, pp 181–194

    Google Scholar 

  • Sade DS, Cushing K, Cushing P, Dunaif J, Figueroa A, Kaplan J, Lauer C, Rhodes D, Schneider J (1976) Population dynamics in relation to social structure on Cayo Santiago. Yrbk Phys Anthropol 20:253–262

    Google Scholar 

  • Sade DS (1967) Determinants of dominance in a group of free-ranging rhesus monkeys. In: Altmann SA (ed) Social communication in primates. University of Chicago Press, Chicago, pp 99–114

    Google Scholar 

  • Sade DS, Chepko-Sade BD, Schneider JM, Roberts SS, Richtsmeier JT (1985) Basic demographic observations on free-ranging rhesus monkeys. Human Relations Area Files, New Haven, CT

    Google Scholar 

  • Sapolsky RM (2005) The influence of social hierarchy on primate health. Science 308:648–652

    Article  PubMed  CAS  Google Scholar 

  • Schulmann SR, Chapis B (1980) Reproductive value and rank relations among macaque sisters. Am Nat 115:580–593

    Article  Google Scholar 

  • Setchell JM, Lee PC, Wickings EJ, Dixson AF (2001) Growth and ontogeny of sexual size dimorphism in the mandrill (Mandrillus sphinx). Am J Phys Anthropol 115:349–360

    Article  PubMed  CAS  Google Scholar 

  • Sibly R, Calow P (1986) Why breeding earlier is always worthwhile. J Theor Biol 123:311–319

    Article  Google Scholar 

  • Silk JB (1984) Measurement of the relative importance of individual selection and kin selection among females of the genus Macaca. Evolution 38:553–559

    Article  Google Scholar 

  • Silk JB (1987) Social behavior in evolutionary perspective. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. University of Chicago Press, Chicago, pp 318–329

    Google Scholar 

  • Stearns SC (1989) Trade-offs in life history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stucki BR, Dow MM, Sade DS (1991) Variance in intrinsic rates of growth among free-ranging rhesus monkeys. Am J Phys Anthropol 84:181–191

    Article  Google Scholar 

  • Thierry B, Singh M, Kaumanns W (2004) Macaque societies: a model for the study of social organization. Cambridge University Press, New York

    Google Scholar 

  • Towne B, Czerwinski SA, Demerath EW, Blangero J, Roche AF, Siervogel RM (2005) Heritability of age at menarche in girls from the Fels Longitudinal Study. Am J Phys Anthropol 128:210–219

    Article  PubMed  Google Scholar 

  • van Noordwijk MA, van Schaik CP (1999) The effects of dominance rank and group size on female lifetime reproductive success in wild long-tailed macaques, Macaca fascicularis. Primates 40:105–130

    Article  Google Scholar 

  • van Tienderen PH, de Jong G (1994) A general model of the relation between phenotypic selection and genetic response. J Evol Biol 7:1–12

    Article  Google Scholar 

  • Whitten PL (1983) Diet and dominance among female vervet monkeys Cercopithecus aethiops. Am J Primatol 5:139–159

    Article  Google Scholar 

  • Widdig A, Bercovitch FB, Streich WJ, Sauermann U, Nürnberg P, Krawczak M (2003) A longitudinal analysis of reproductive skew in male rhesus macaques. Proc R Soc Lond B Biol Sci 271:819–826

    Article  Google Scholar 

  • Wilham RL (1963) The covariance between relatives for characters composed of components contributed by related individuals. Biometrics 19:18–27

    Article  Google Scholar 

  • Williams-Blangero S, Blangero J (1995) Heritability of age of first birth in captive olive baboons. Am J Primatol 37:233–239

    Article  Google Scholar 

  • Wilson AJ (2008) Why h 2 does not always equal V A /V P ? J Evol Biol 21:647–650

    Article  PubMed  CAS  Google Scholar 

  • Wilson AJ, Coltman DW, Pemberton JM, Overall ADJ, Byrne KA, Kruuk LEB (2005) Maternal genetic effects set the potential for evolution in a free-living vertebrate population. J Evol Biol 18:405–414

    Article  PubMed  CAS  Google Scholar 

  • Wilson AJ, Réale D (2006) Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am Nat 167:E23–E38

    Article  PubMed  Google Scholar 

  • Wolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 364:1107–1115

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Cayo Santiago is part of the Caribbean Primate Research Center (CPRC) which is supported by the University of Puerto Rico, Medical Sciences Campus and the National Institutes of Health (NIH). The facility is also supported by Grant Number CM-5 P40 RR003640-20 from the National Center for Research Resources (NCRR), a component of NIH. The contents of this chapter are solely the responsibility of the author and do not necessarily represent the official views of NCRR or NIH. The genetic database from which paternity data were provided was originally created by John Berard, Fred Bercovitch, Matt Kessler, Michael Krawczak, Peter Nürnberg, and Jorg Schmidtke. The National Science Foundation, Harry Frank Guggenheim Foundation, University of Berlin, Deutsche Forschungsmeinschaft, Medizinische Hochschule Hannover, NIH, and CPRC funded the creation of the genetic database. Additional funding for this research came from the University of Illinois Graduate College and the University of Missouri. Melissa Gerald, John Cant, Terry Kensler, Benedikt Hallgrimsson, and Jean Turnquist were all helpful resources while working with CPRC materials. Angel “Guelo” Figueroa, Edgar Davila, and Elizabeth Maldonado must be credited for the completeness and upkeep of the demographic records on Cayo Santiago. John Berard and Donald Sade provided the data and discussion on matriline social rank. Steve Leigh, Paul Garber, Charles Roseman, Rebecca Stumpf, and Jim Cheverud all provided helpful insights on this project. Comments from Martin Kowalewski and Melissa Raguet also improved parts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory E. Blomquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blomquist, G.E. (2012). Female Age of First Reproduction at Cayo Santiago: Heritability and Shared Environments. In: Wang, Q. (eds) Bones, Genetics, and Behavior of Rhesus Macaques. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1046-1_9

Download citation

Publish with us

Policies and ethics