Skip to main content

A Ribosomal Perspective on the Mechanism of Selenocysteine Incorporation

  • Chapter
  • First Online:
Selenium
  • 1902 Accesses

Abstract

Selenocysteine (Sec) is cotranslationally inserted into polypeptides during the elongation phase of protein synthesis in response to specific UGA codons. As UGA normally signals translation termination, the Sec incorporation complex is required to modify the canonical translation machinery. Thus, a thorough understanding of the Sec incorporation mechanism necessitates careful consideration of the intricacies of general translation, specifically during the elongation phase. Here, we consider the current body of evidence that supports a key role for the ribosome in regulating the process of Sec incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Copeland PR, Stepanik VA, Driscoll DM (2001) Mol Cell Biol 21:1491

    Article  PubMed  CAS  Google Scholar 

  2. Caban K, Kinzy SA, Copeland PR (2007) Mol Cell Biol 27:6350

    Article  PubMed  CAS  Google Scholar 

  3. Takeuchi A, Schmitt D, Chapple C et al (2009) Nucleic Acids Res 37:2126

    Article  PubMed  CAS  Google Scholar 

  4. Papp LV, Lu J, Striebel F et al (2006) Mol Cell Biol 26:4895

    Article  PubMed  CAS  Google Scholar 

  5. Rodnina MV, Fricke R, Wintermeyer W (1994) Biochemistry 33:12267

    Article  PubMed  CAS  Google Scholar 

  6. Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W (1996) J Biol Chem 271:646

    Article  PubMed  CAS  Google Scholar 

  7. Kothe U, Wieden HJ, Mohr D et al (2004) J Mol Biol 336:1011

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalo P, Reboud JP (2003) Biol Cell 95:179

    Article  PubMed  CAS  Google Scholar 

  9. Uchiumi T, Hori K, Nomura T, Hachimori A (1999) J Biol Chem 274:27578

    Article  PubMed  CAS  Google Scholar 

  10. Kavran JM, Steitz TA (2007) J Mol Biol 371:1047

    Article  PubMed  CAS  Google Scholar 

  11. Diaconu M, Kothe U, Schlünzen F et al (2005) Cell 121:991

    Article  PubMed  CAS  Google Scholar 

  12. Hüttenhofer A, Böck A (1998) Biochemistry 37:885

    Article  PubMed  Google Scholar 

  13. Pape T, Wintermeyer W, Rodnina M (1999) EMBO J 18:3800

    Article  PubMed  CAS  Google Scholar 

  14. Gromadski KB, Rodnina MV (2004) Mol Cell 13:191

    Article  PubMed  CAS  Google Scholar 

  15. Thompson RC, Stone PJ (1977) Proc Natl Acad Sci USA 74:198

    Article  PubMed  CAS  Google Scholar 

  16. Ogle JM, Brodersen DE, Clemons WM et al (2001) Science 292:897

    Article  PubMed  CAS  Google Scholar 

  17. Ogle JM, Murphy FV, Tarry MJ et al (2002) Cell 111:721

    Article  PubMed  CAS  Google Scholar 

  18. Ogle JM, Carter AP, Ramakrishnan V (2003) Trends Biochem Sci 28:259

    Article  PubMed  CAS  Google Scholar 

  19. Schmeing TM, Voorhees RM, Kelley AC et al (2009) Science 326:688

    Article  PubMed  CAS  Google Scholar 

  20. Piepenburg O, Pape T, Pleiss JA et al (2000) Biochemistry 39:1734

    Article  PubMed  CAS  Google Scholar 

  21. Pape T, Wintermeyer W, Rodnina MV (2000) Nat Struct Biol 7:104

    Article  PubMed  CAS  Google Scholar 

  22. Hirsh D, Gold L (1971) J Mol Biol 58:459

    Article  PubMed  CAS  Google Scholar 

  23. Cochella L, Green R (2005) Science 308:1178

    Article  PubMed  CAS  Google Scholar 

  24. Youngman EM, He SL, Nikstad LJ et al (2007) Mol Cell 28:533

    Article  PubMed  CAS  Google Scholar 

  25. Abel K, Yoder MD, Hilgenfeld R et al (1996) Structure 4:1153

    Article  PubMed  CAS  Google Scholar 

  26. Polekhina G, Thirup S, Kjeldgaard M et al (1996) Structure 4:1141

    Article  PubMed  CAS  Google Scholar 

  27. Pape T, Wintermeyer W, Rodnina MV (1998) EMBO J 17:7490

    Article  PubMed  CAS  Google Scholar 

  28. Nissen P, Hansen J, Ban N et al (2000) Science 289:920

    Article  PubMed  CAS  Google Scholar 

  29. Green R, Switzer C, Noller HF (1998) Science 280:286

    Article  PubMed  CAS  Google Scholar 

  30. Schmeing TM, Huang KS, Strobel SA et al (2005) Nature 438:520

    Article  PubMed  CAS  Google Scholar 

  31. Voorhees RM, Weixlbaumer A, Loakes D et al (2009) Nat Struct Mol Biol 16:528

    Article  PubMed  CAS  Google Scholar 

  32. Moazed D, Noller HF (1989) Nature 342:142

    Article  PubMed  CAS  Google Scholar 

  33. Ledoux S, Uhlenbeck OC (2008) Mol Cell 31:114

    Article  PubMed  CAS  Google Scholar 

  34. Petrone PM, Snow CD, Lucent D et al (2008) Proc Natl Acad Sci USA 105:16549

    Article  PubMed  CAS  Google Scholar 

  35. Nakatogawa H, Ito K (2002) Cell 108:629

    Article  PubMed  CAS  Google Scholar 

  36. Fahlman RP, Dale T, Uhlenbeck OC (2004) Mol Cell 16:799

    Article  PubMed  CAS  Google Scholar 

  37. Olejniczak M, Dale T, Fahlman RP et al (2005) Nat Struct Mol Biol 12:788

    Article  PubMed  CAS  Google Scholar 

  38. Effraim PR, Wang J, Englander MT et al (2009) Nat Chem Biol 5:947

    Article  PubMed  CAS  Google Scholar 

  39. Fletcher JE, Copeland PR, Driscoll DM (2000) RNA 6:1573

    Article  PubMed  CAS  Google Scholar 

  40. Martin GW, Berry MJ (2001) Genes Cells 6:121

    Article  PubMed  CAS  Google Scholar 

  41. Sergiev PV, Kiparisov SV, Burakovsky DE et al (2005) J Mol Biol 353:116

    Article  PubMed  CAS  Google Scholar 

  42. Zavialov AV, Ehrenberg M (2003) Cell 114:113

    Article  PubMed  CAS  Google Scholar 

  43. Valle M, Zavialov A, Li W et al (2003) Nat Struct Biol 10:899

    Article  PubMed  CAS  Google Scholar 

  44. Blanchard SC, Kim HD, Gonzalez RL et al (2004) Proc Natl Acad Sci USA 101:12893

    Article  PubMed  CAS  Google Scholar 

  45. Dorner S, Brunelle JL, Sharma D et al (2006) Nat Struct Mol Biol 13:234

    Article  PubMed  CAS  Google Scholar 

  46. Agirrezabala X, Lei J, Brunelle JL et al (2008) Mol Cell 32:190

    Article  PubMed  CAS  Google Scholar 

  47. Munro JB, Altman RB, O’Connor N et al (2007) Mol Cell 25:505

    Article  PubMed  CAS  Google Scholar 

  48. Subramanian AR, Dabbs ER (1980) Eur J Biochem 112:425

    Article  PubMed  CAS  Google Scholar 

  49. Fei J, Kosuri P, MacDougall DD, Gonzalez RL (2008) Mol Cell 30:348

    Article  PubMed  CAS  Google Scholar 

  50. Cornish PV, Ermolenko DN, Staple DW et al (2009) Proc Natl Acad Sci USA 106:2571

    Article  PubMed  CAS  Google Scholar 

  51. Munro JB, Altman RB, Tung CS et al (2010) EMBO J 29:770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants to PRC and a National Research Service Award to KC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Copeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Caban, K., Copeland, P.R. (2011). A Ribosomal Perspective on the Mechanism of Selenocysteine Incorporation. In: Hatfield, D., Berry, M., Gladyshev, V. (eds) Selenium. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1025-6_5

Download citation

Publish with us

Policies and ethics