Advertisement

Selenium pp 335-344 | Cite as

An Emerging Picture of the Biological Roles of Selenoprotein K

Chapter

Abstract

Recent insight has been made regarding the biological role(s) for selenoprotein K (SelK) in humans and other organisms. Suggested functions for mammalian SelK include protection against oxidative stress in cardiomyocytes, regulation of endoplasmic reticulum (ER) stress in HepG2 cells, and facilitation of calcium flux in immune cells during receptor-mediated activation. The data supporting these functions as well as other aspects of SelK are summarized in this chapter.

Keywords

Endoplasmic Reticulum HepG2 Cell Endoplasmic Reticulum Stress West Nile Virus Endoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kryukov GV, Castellano S, Novoselov SV et al (2003) Science 300:1439PubMedCrossRefGoogle Scholar
  2. 2.
    Castellano S, Morozova N, Morey M et al (2001) EMBO Rep 2:697PubMedCrossRefGoogle Scholar
  3. 3.
    Morozova N, Forry EP, Shahid E et al (2003) Genes Cells 8:963PubMedCrossRefGoogle Scholar
  4. 4.
    Chen CL, Shim MS, Chung J et al (2006) Biochem Biophys Res Commun 348:1296PubMedCrossRefGoogle Scholar
  5. 5.
    Lu C, Qiu F, Zhou H et al (2006) FEBS Lett 580:5189PubMedCrossRefGoogle Scholar
  6. 6.
    Hoffmann PR, Hoge SC, Li PA et al (2007) Nucleic Acids Res 35:3963PubMedCrossRefGoogle Scholar
  7. 7.
    Verma C, Hoffmann FW, Kumar M et al (2011) J Immunol 186(4):2127Google Scholar
  8. 8.
    Berglund LE, Björling P, Oksvold L et al (2008) Mol Cell Proteomics 10:2019Google Scholar
  9. 9.
    Wu MM, Buchanan J, Luik RM et al (2006) J Cell Biol 174:803PubMedCrossRefGoogle Scholar
  10. 10.
    Luik RM, Wu MM, Buchanan J et al (2006) J Cell Biol 174:815PubMedCrossRefGoogle Scholar
  11. 11.
    Reeves MA, Hoffmann PR (2009) Cell Mol Life Sci 66:2457PubMedCrossRefGoogle Scholar
  12. 12.
    Reeves MA, Bellinger FP, Berry MJ (2010) Antioxid Redox Signal 12:809PubMedCrossRefGoogle Scholar
  13. 13.
    Gao Y, Feng HC, Walder K et al (2004) FEBS Lett 563:185PubMedCrossRefGoogle Scholar
  14. 14.
    Lobanov AV, Hatfield DL, Gladyshev VN (2009) Biochim Biophys Acta 1790:1424PubMedCrossRefGoogle Scholar
  15. 15.
    Du S, Zhou J, Jia Y et al (2010) Arch Biochem Biophys 502:137PubMedCrossRefGoogle Scholar
  16. 16.
    Lewis RS (2001) Annu Rev Immunol 19:497PubMedCrossRefGoogle Scholar
  17. 17.
    Parekh AB, Penner R (1997) Physiol Rev 77:901PubMedGoogle Scholar
  18. 18.
    Tsien RY, Pozzan T, Rink TJ (1982) Nature 295:68PubMedCrossRefGoogle Scholar
  19. 19.
    Quintana A, Griesemer D, Schwarz EC et al (2005) Pflugers Arch 450:1PubMedCrossRefGoogle Scholar
  20. 20.
    Baba Y, Nishida K, Fujii Y et al (2008) Nat Immunol 9:81PubMedCrossRefGoogle Scholar
  21. 21.
    Braun A, Gessner JE, Varga-Szabo D et al (2009) Blood 113:1097PubMedCrossRefGoogle Scholar
  22. 22.
    Ye Y, Shibata Y, Yun C et al (2004) Nature 429:841PubMedCrossRefGoogle Scholar
  23. 23.
    Gao Y, Walder K, Sunderland T et al (2003) Diabetes 52:929PubMedCrossRefGoogle Scholar
  24. 24.
    Curran JE, Jowett JB, Elliott KS et al (2005) Nat Genet 37:1234PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluUSA

Personalised recommendations