Advertisement

Selenium pp 235-248 | Cite as

Selenoproteins in Nervous System Development, Function, and Degeneration

  • Ulrich Schweizer
Chapter

Abstract

The discovery of spontaneous neurological phenotypes in selenoprotein P-deficient (Sepp −/ ) mice marks a turning point in our appreciation of selenium (Se) and selenoproteins within the nervous system. Before, Se was viewed mainly as a cofactor of glutathione peroxidase 1 (GPx1), and feeding animals low Se-containing diets or targeted inactivation of Gpx1 have merely exacerbated neurological damage caused by experimental brain ischemia or exposure to neurotoxins. Case reports on a possible relationship between Se and neurological disease in patients were inspiring and often visionary, but initially failed to provide a solid mechanistic framework to explain the observed phenotypes. Sepp inactivation for the first time provided a tool to experimentally modulate brain Se content and brain selenoprotein expression. Since then a large and still growing number of transgenic mouse models affecting cerebral selenoprotein expression have been analyzed with respect to possible neurological defects. These studies revealed that, apart from more general protective roles during neurodegeneration, many specific developmental processes depend on selenoproteins. Recently, the essential roles of selenoproteins in human neurobiology were supported by the identification of patients carrying mutations in genes involved in selenoprotein biosynthesis. The phenotypic similarities between these patients and transgenic mouse models proved that mice represent a valid model for the study of many aspects of the neurobiology of Se. This chapter will summarize the topic from the perspective of molecular genetics.

Keywords

Thyroid Hormone Sensorineural Hearing Loss Neurological Phenotype Buthionine Sulfoximine Movement Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG), Deutscher Akademischer Austauschdienst (DAAD), and Charité-Universitätsmedizin Berlin.

References

  1. 1.
    Behne D, Hilmert H, Scheid S et al (1988) Biochim Biophys Acta 966:12PubMedGoogle Scholar
  2. 2.
    Bermano G, Nicol F, Dyer JA et al (1995) Biochem J 311:425PubMedGoogle Scholar
  3. 3.
    Savaskan NE, Bräuer AU, Kühbacher M et al (2003) FASEB J 17:112PubMedGoogle Scholar
  4. 4.
    Wallace E, Calvin H, Cooper G (1983) Gamete Res 4:377CrossRefGoogle Scholar
  5. 5.
    Schomburg L, Schweizer U, Holtmann B et al (2003) Biochem J 370:397PubMedCrossRefGoogle Scholar
  6. 6.
    Hill KE, Zhou J, McMahan WJ et al (2003) J Biol Chem 278:13640PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang Y, Zhou Y, Schweizer U et al (2008) J Biol Chem 283:2427PubMedCrossRefGoogle Scholar
  8. 8.
    Wirth EK, Conrad M, Winterer J et al (2010) FASEB J 24:844PubMedCrossRefGoogle Scholar
  9. 9.
    Weber GF, Maertens P, Meng XZ et al (1991) Lancet 337:1443PubMedCrossRefGoogle Scholar
  10. 10.
    Ramaekers VT, Calomme M, Vanden Berghe D et al (1994) Neuropediatrics 25:217PubMedCrossRefGoogle Scholar
  11. 11.
    Agamy O, Ben Zeev B, Lev D et al (2010) Am J Hum Genet 87:538PubMedCrossRefGoogle Scholar
  12. 12.
    Schoenmakers E, Agostini M, Mitchell C et al (2010) J Clin Invest 120:4220PubMedCrossRefGoogle Scholar
  13. 13.
    Ishibashi N, Prokopenko O, Weisbrot-Lefkowitz M et al (2002) Brain Res Mol Brain Res 109:34PubMedCrossRefGoogle Scholar
  14. 14.
    Ishibashi N, Prokopenko O, Reuhl KR et al (2002) J Immunol 168:1926PubMedGoogle Scholar
  15. 15.
    Crack PJ, Taylor JM, Flentjar NJ et al (2001) J Neurochem 78:1389PubMedCrossRefGoogle Scholar
  16. 16.
    Takizawa S, Matsushima K, Shinohara Y et al (1994) J Neurol Sci 122:66PubMedCrossRefGoogle Scholar
  17. 17.
    Gupta R, Singh M, Sharma A (2003) Pharmacol Res 48:209PubMedCrossRefGoogle Scholar
  18. 18.
    Ansari MA, Ahmad AS, Ahmad M et al (2004) Biol Trace Elem Res 101:73PubMedCrossRefGoogle Scholar
  19. 19.
    Kim HC, Jhoo WK, Choi DY et al (1999) Brain Res 851:76PubMedCrossRefGoogle Scholar
  20. 20.
    Kim H, Jhoo W, Shin E et al (2000) Brain Res 862:247PubMedCrossRefGoogle Scholar
  21. 21.
    al Deeb S, al Moutaery K, Bruyn GW et al (1995) J Psychiatry Neurosci 20:189PubMedGoogle Scholar
  22. 22.
    Imam SZ, Newport GD, Islam F et al (1999) Brain Res 818:575PubMedCrossRefGoogle Scholar
  23. 23.
    Zafar KS, Siddiqui A, Sayeed I et al (2003) J Neurochem 84:438PubMedCrossRefGoogle Scholar
  24. 24.
    Sanchez V, Camarero J, O’Shea E et al (2003) Neuropharmacology 44:449PubMedCrossRefGoogle Scholar
  25. 25.
    Bensadoun JC, Mirochnitchenko O, Inouye M et al (1998) Eur J Neurosci 10:3231PubMedCrossRefGoogle Scholar
  26. 26.
    Klivenyi P, Andreassen OA, Ferrante RJ et al (2000) J Neurosci 20:1PubMedGoogle Scholar
  27. 27.
    Schweizer U, Michaelis M, Köhrle J et al (2004) Biochem J 378:21PubMedCrossRefGoogle Scholar
  28. 28.
    Hill KE, Zhou J, McMahan WJ et al (2004) J Nutr 134:157PubMedGoogle Scholar
  29. 29.
    Valentine WM, Hill KE, Austin LM et al (2005) Toxicol Pathol 33:570PubMedCrossRefGoogle Scholar
  30. 30.
    Schweizer U, Streckfuss F, Pelt P et al (2005) Biochem J 386:221PubMedCrossRefGoogle Scholar
  31. 31.
    Schomburg L, Riese C, Michaelis M et al (2006) Endocrinology 147:1306PubMedCrossRefGoogle Scholar
  32. 32.
    Peters MM, Hill KE, Burk RF et al (2006) Mol Neurodegener 1:12PubMedCrossRefGoogle Scholar
  33. 33.
    Hill KE, Zhou J, Austin LM et al (2007) J Biol Chem 282:10972PubMedCrossRefGoogle Scholar
  34. 34.
    Renko K, Werner M, Renner-Müller I et al (2008) Biochem J 409:741PubMedCrossRefGoogle Scholar
  35. 35.
    Kühbacher M, Bartel J, Hoppe B et al (2009) J Neurochem 110:133PubMedCrossRefGoogle Scholar
  36. 36.
    Scharpf M, Schweizer U, Arzberger T et al (2007) J Neural Transm 114:877PubMedCrossRefGoogle Scholar
  37. 37.
    Olson GE, Winfrey VP, Nagdas SK et al (2007) J Biol Chem 282:12290PubMedCrossRefGoogle Scholar
  38. 38.
    Burk RF, Hill KE, Olson GE et al (2007) J Neurosci 27:6207PubMedCrossRefGoogle Scholar
  39. 39.
    Valentine WM, Abel TW, Hill KE et al (2008) J Neuropathol Exp Neurol 67:68PubMedCrossRefGoogle Scholar
  40. 40.
    Masiulis I, Quill TA, Burk RF et al (2009) Biol Chem 390:67PubMedCrossRefGoogle Scholar
  41. 41.
    Olson GE, Winfrey VP, Hill KE et al (2008) J Biol Chem 283:6854PubMedCrossRefGoogle Scholar
  42. 42.
    Chiu-Ugalde J, Theilig F, Behrends T et al (2010) Biochem J 431:103PubMedCrossRefGoogle Scholar
  43. 43.
    Seiler A, Schneider M, Förster H et al (2008) Cell Metab 8:237PubMedCrossRefGoogle Scholar
  44. 44.
    Roth S, Zhang S, Chiu J et al (2010) J Trace Elem Med Biol 24:130PubMedCrossRefGoogle Scholar
  45. 45.
    Carlson BA, Schweizer U, Perella C et al (2009) Biochem J 418:61PubMedCrossRefGoogle Scholar
  46. 46.
    Imai H, Hirao F, Sakamoto T et al (2003) Biochem Biophys Res Commun 305:278PubMedCrossRefGoogle Scholar
  47. 47.
    Yant LJ, Ran Q, Rao L et al (2003) Free Radic Biol Med 34:496PubMedCrossRefGoogle Scholar
  48. 48.
    Steullet P, Cabungcal JH, Kulak A et al (2010) J Neurosci 30:2547PubMedCrossRefGoogle Scholar
  49. 49.
    Behrens MM, Ali SS, Dao DN et al (2007) Science 318:1645PubMedCrossRefGoogle Scholar
  50. 50.
    Gysin R, Kraftsik R, Boulat O et al (2011) Antioxid Redox Signal 15:2003Google Scholar
  51. 51.
    Ran Q, Liang H, Gu M et al (2004) J Biol Chem 279:55137PubMedCrossRefGoogle Scholar
  52. 52.
    Ufer C, Wang CC, Fahling M et al (2008) Genes Dev 22:1838PubMedCrossRefGoogle Scholar
  53. 53.
    Conrad M, Jakupoglu C, Moreno SG et al (2004) Mol Cell Biol 24:9414PubMedCrossRefGoogle Scholar
  54. 54.
    Jakupoglu C, Przemeck GK, Schneider M et al (2005) Mol Cell Biol 25:1980PubMedCrossRefGoogle Scholar
  55. 55.
    Soerensen J, Jakupoglu C, Beck H et al (2008) PLoS One 3:e1813PubMedCrossRefGoogle Scholar
  56. 56.
    Schneider MJ, Fiering SN, Thai B et al (2006) Endocrinology 147:580PubMedCrossRefGoogle Scholar
  57. 57.
    Schneider MJ, Fiering SN, Pallud SE et al (2001) Mol Endocrinol 15:2137PubMedCrossRefGoogle Scholar
  58. 58.
    Gilbert ME, Sui L, Walker MJ et al (2007) Endocrinology 148:92PubMedCrossRefGoogle Scholar
  59. 59.
    Galton VA, Wood ET, St Germain EA et al (2007) Endocrinology 148:3080PubMedCrossRefGoogle Scholar
  60. 60.
    Ng L, Goodyear RJ, Woods CA et al (2004) Proc Natl Acad Sci USA 101:3474PubMedCrossRefGoogle Scholar
  61. 61.
    Hernandez A, Martinez ME, Fiering S et al (2006) J Clin Invest 116:476PubMedCrossRefGoogle Scholar
  62. 62.
    Ng L, Hernandez A, He W et al (2009) Endocrinology 150:1952PubMedCrossRefGoogle Scholar
  63. 63.
    Ng L, Lyubarsky A, Nikonov SS et al (2010) J Neurosci 30:3347PubMedCrossRefGoogle Scholar
  64. 64.
    Dumitrescu AM, Liao XH, Abdullah MS et al (2005) Nat Genet 37:1247PubMedCrossRefGoogle Scholar
  65. 65.
    Azevedo MF, Barra GB, Naves LA et al (2010) J Clin Endocrinol Metab 95:4066PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut für Experimentelle EndokrinologieCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations