The Future of ReLACS and Femtosecond Laser Ocular Surgery

  • Ronald R. Krueger
  • Jean-Marie A. Parel
  • Krystel R. Huxlin
  • Wayne H. Knox
  • Kristian Hohla


When speaking about the future, there is always a tradeoff between imaginative speculation and a natural forecasting of trends and events. As this is one of the first books published on this subject, much of the material in this book is new. One might consider it speculation to say that femtosecond (FS) laser technology will have a dramatic impact and be fully embraced by the field. If that statement were made 10 years ago, it would be speculation. The fact is that FS laser technology has already had a dramatic impact on refractive corneal surgery over these past 10 years, and it is now poised to see a similar dramatic impact on refractive cataract surgery. Although laser refractive cataract surgery (LARCS) is only just beginning, it is a reality, and hence it is not unreasonable to say that its impact in the field is more than just speculation, but rather a natural forecasting of the trends and events we have seen thus far. What are those events and trends?


Cataract Surgery Refractive Index Change Adaptive Optic Crystalline Lens Deep Anterior Lamellar Keratoplasty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge and thank Brien Holden and his team, as well as Fabrice Manns, Esdras Arrieta, and the team at the Ophthalmic Biophysics Center at the University of Miami for their contribution toward the section on capsular refilling.


  1. 1.
    Shousha MA, Yoo SH, Kymionis GD, Ide T, Feuer W, Karp CL, O’Brien TP, Culbertson WW, Alfonso E. Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology. 2011;118(2):315–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Buzzonetti L, Laborante A, Petrocelli G. Standardized big-bubble technique in deep anterior lamellar keratoplasty assisted by the femtosecond laser. J Cataract Refract Surg. 2010;36(10):1631–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Price Jr FW, Price MO, Grandin JC, Kwon R. Deep anterior lamellar keratoplasty with femtosecond-laser zigzag incisions. J Cataract Refract Surg. 2009;35(5):804–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Meisler DM, Dupps Jr WJ, Covert DJ, Koenig SB. Use of an air-fluid exchange system to promote graft adhesion during Descemet’s stripping automated endothelial keratoplasty. J Cataract Refract Surg. 2007;33(5):770–2.PubMedCrossRefGoogle Scholar
  6. 6.
    Terry MA, Ousley PJ. Small-incision deep lamellar endothelial keratoplasty (DLEK): six-month results in the first prospective clinical study. Cornea. 2005;24(1):59–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Terry MA, Hoar KL, Wall J, Ousley P. Histology of dislocations in endothelial keratoplasty (DSEK and DLEK): a laboratory-based, surgical solution to dislocation in 100 consecutive DSEK cases. Cornea. 2006;25(8):926–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Krueger RR, Juhasz T, Gualano A, Marchi V. The picosecond laser for nonmechanical laser in situ keratomileusis. J Refract Surg. 1998;14(4):467–9.PubMedGoogle Scholar
  9. 9.
    Sekundo W, Kunert K, Russmann C, Gille A, Bissmann W, Stobrawa G, Sticker M, Bischoff M, Blum M. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg. 2008;34(9):1513–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J Cataract Refract Surg. 2011;37(1):127–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Seyeddain O, Riha W, Hohensinn M, Nix G, Dexl AK, Grabner G. Refractive surgical correction of presbyopia with the AcuFocus small aperture corneal inlay: two-year follow-up. J Refract Surg. 2010;26(10):707–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Kirkwood BJ, Hendicott PL, Read SA, Pesudovs K. Repeatability and validity of lens densitometry measured with Scheimpflug imaging. J Cataract Refract Surg. 2009;35(7):1210–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Macsai MS, Padnick-Silver L, Fontes BM. Visual outcomes after accommodating intraocular lens implantation. J Cataract Refract Surg. 2006;32(4):628–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Ossma IL, Galvis A, Vargas LG, Trager MJ, Vagefi MR, McLeod SD. Synchrony dual-optic accommodating intraocular lens. Part 2: Pilot clinical evaluation. J Cataract Refract Surg. 2007;33(1):47–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Alió JL, Ben-nun J, Rodríguez-Prats JL, Plaza AB. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept. J Cataract Refract Surg. 2009;35(10):1671–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Koopmans SA, Terwee T, Glasser A, Wendt M, Vilupuru AS, van Kooten TG, Norrby S, Haitjema HJ, Kooijman AC. Accommodative lens refilling in rhesus monkeys. Invest Ophthalmol Vis Sci. 2006;47(7):2976–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Tahi H, Hamaoui M, Parel J-M, Fantes F. A technique for small peripheral capsulorhexis. J Cataract Refractive Surg. 1999;25:744–7.CrossRefGoogle Scholar
  18. 18.
    Kessler J. Experiments in refilling the lens. Arch Ophthalmol. 1964;71:412–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kessler J. Refilling the rabbit lens. Further experiments. Arch Ophthalmol. 1966;76(4):596–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Kessler J. Lens refilling and regrowth of lens substance in the rabbit eye. Ann Ophthalmol. 1975;7(8):1059–62.PubMedGoogle Scholar
  21. 21.
    Agarwal LP, Angra SK, Khosla PK, Tandon HD. Lens regeneration in mammals: I. Rabbits (after extracapsular extraction). Orient Arch Ophthalmol. 1964;2:1–17.Google Scholar
  22. 22.
    Agarwal LP, Angra SK, Khosla PK, Tandon HD. Lens regeneration in mammals: II. Monkeys (after extracapsular extraction). Orient Arch Ophthalmol. 1964;2:47–59.Google Scholar
  23. 23.
    Agarwal LP, Angra SK, Tandon HD. Lens regeneration in mammals: III. Rabbits (after intracapsular extraction). Orient Arch Ophthalmol. 1964;2:95–100.Google Scholar
  24. 24.
    Agarwal LP, Narsimhan EC, Mohan M. Experimental lens refilling. Orient Arch Ophthalmol. 1967;5:205–12.Google Scholar
  25. 25.
    Parel JM, Treffers WF, Gelender H, Norton EWD. Phaco-Ersatz: a new approach to cataract surgery. Ophthalmology. 1981;88(9 Suppl):95.Google Scholar
  26. 26.
    Parel JM, Gelender H, Trefers WF, Norton EWD. Phaco-Ersatz: cataract surgery designed to preserve accommodation. Graefe’s Arch Clin Exp Ophthalmol. 1986;224:165–73.CrossRefGoogle Scholar
  27. 27.
    Haefliger E, Parel J-M, Fantes F, Norton EWD, Anderson D, Forster RK, Hernandez E, Feuer WJ. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the non-human primate. Ophthalmology. 1987;94:471–7.PubMedGoogle Scholar
  28. 28.
    Haefliger E, Parel J-M. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the old rhesus monkey. Refract Corneal Surg. 1994;10:550–5.Google Scholar
  29. 29.
    Barraquer J. Lentilles intraoculaires 1949–1994. Phaco-Ersatz 2001. An Inst Barraquer. 1993–1994;24:27–36.Google Scholar
  30. 30.
    Gindi JJ, Wan WL, Schanzlin DJ. Endocapsular cataract surgery: I. Surgical technique. Cataract. 1985;2:6–10.Google Scholar
  31. 31.
    Lucke K, Hettlich HJ, Kreiner CF. A method of lens extraction for the injection of liquid intraocular lenses. Ger J Ophthalmol. 1992;1(5):342–5.PubMedGoogle Scholar
  32. 32.
    Hettlich HJ, Lucke K, Kreiner CF. Light-induced endocapsular polymerization of injectable lens refilling materials. Ger J Ophthalmol. 1992;1(5):346–9.PubMedGoogle Scholar
  33. 33.
    Hettlich HJ, Lucke K, Asiyo-Vogel MN, Schulte M, Vogel A. Lens refilling and endocapsular polymerization of an injectable intraocular lens: in vitro and in vivo study of potential risks and benefits. J Cataract Refract Surg. 1994;20:115–23.PubMedGoogle Scholar
  34. 34.
    Hettlich HJ, Lucke K, Asiyo-Vogel M, Vogel A. Experimental studies of the risks of endocapsular polymerization of injectable intraocular lenses. Ophthalmologe. 1995;92(3):329–34.PubMedGoogle Scholar
  35. 35.
    Hettlich HJ, Asiyo-Vogel M. Experimental experiences with balloon-shaped capsular sac implantation with reference to accommodation outcome in intraocular lenses. Ophthalmologe. 1996;93(1):73–5.PubMedGoogle Scholar
  36. 36.
    Nishi O, Hara T, Sakka Y, Hayashi H, Nakamae K, Yamada Y. Refilling the lens with inflatable endocapsular balloon. Dev Ophthalmol. 1991;22:122–5.PubMedGoogle Scholar
  37. 37.
    Nishi O, Hara T, Hara T, Sakka Y, Hayashi F, Nakamae K, Yamada Y. Refilling the lens with a inflatable endocapsular balloon: surgical procedure in animal eyes. Graefe’s Arch Clin Exp Ophthalmol. 1992;230:47–55.CrossRefGoogle Scholar
  38. 38.
    Nishi O, Nakai Y, Yamada Y, Mizumoto Y. Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons. Arch Ophthalmol. 1993;111(12):1677–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Sakka Y, Hara T, Yamada Y, Hara T, Hayashi F. Accommodation in primate eyes after implantation of refilled endocapsular balloon. Am J Ophthalmol. 1996;121:210–2.PubMedGoogle Scholar
  40. 40.
    Hara T, Sakka Y, Sakanishi K, Yamamda Y, Nakamae K, Hayashi F. Complications associated with endocapsular balloon implantation in rabbit eyes. Cataract Refract Surg. 1994;20:507–12.Google Scholar
  41. 41.
    Nishi O, Nishi K, Mano C, Ichihara M, Honda T. Controlling the capsular shape in lens refilling. Arch Ophthalmol. 1997;115(4):507–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Nishi O, Nishi K, Mano C, Ichihara M, Honda T. Lens refilling with injectable silicone in rabbit eyes. J Cataract Refract Surg. 1998;24(7):975–82.PubMedGoogle Scholar
  43. 43.
    Nishi O, Nishi K. Accommodation amplitude after lens refilling with injectable silicone by sealing the capsule with a plug in primates. Arch Ophthalmol. 1998;116(10):1358–61.PubMedGoogle Scholar
  44. 44.
    Fernandez V, Fragoso MA, Lamar P, Orozco MA, Dubovy S, Willcox M, Parel J-M. Efficiency of various drugs in the prevention of Posterior Capsular Opacification (PCO). J Refract Cataract Surg. 2004;30(12):2598–605.CrossRefGoogle Scholar
  45. 45.
    Takesue Y, Mui MM, Hachiya T, Parel J-M. Comparative photodynamic effect of Rose Bengal, Erytrocin B and DHE on lens epithelial cells. In: Parel J-M, Ren Q, editors. Ophthalmic technologies III. Proc SPIE 1993;1877:323–7.Google Scholar
  46. 46.
    Behar-Cohen F, David T, D’Hermies F, Pouliquen YM, Buechler Y, Nova MP, Houston LL, Courtois Y. In vivo inhibition of lens regrowth by fibroblast growth factor 2-saporin. Invest Ophthalmol Vis Sci. 1995;36:2434–48.PubMedGoogle Scholar
  47. 47.
    Hao X, Jeffery JL, Wilkie JS, Meijs GF, Clayton A, Watling JD, Ho A, Fernandez V, Acosta C, Yamamoto H, Aly MG, Parel J-M, Hughes TC. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lens. Biomaterials. 2010;31(32):8153–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Borja D, Siedlecki D, de Castro A, Uhlhorn S, Ortiz S, Arrieta E, Parel JM, Marcos S, Manns F. Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient. Biomed Opt Exp. 2010;1(5):1331–40.CrossRefGoogle Scholar
  49. 49.
    Manns F, Maceo B, Ho A, Parel J-M. Contribution of the refractive index gradient to the spherical aberration of the human crystalline lens. ARVO. Invest Ophthalmol Vis Sci. 2011;52 [E-Abstract 3406].Google Scholar
  50. 50.
    Olson R, Mamalis N, Haugen B. A light adjustable lens with injectable optics. Curr Opin Ophthalmol. 2006;17(1):72–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Urs R, Manns F, Ho A, Borja D, Amelinckx A, Smith J, Jain R, Augusteyn R, Parel J-M. Shape of the isolated ex-vivo human crystalline lens. Vis Res. 2009;49(1):74–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Urs R, Ho A, Manns F, Parel J-M. Age-dependent Fourier model of the shape of the isolated ex-vivo human crystalline lens. Vis Res. 2010;50(11):1041–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Ruggeri M, Uhlhorn S, De Freitas C, Manns F, Parel J-M. Real-time imaging of accommodation using extended depth spectral domain OCT. ARVO. Invest Ophthalmol Vis Sci. 2011;52 [E-Abstract 3402].Google Scholar
  54. 54.
    Kim E, Uhlhorn SR, Erhmann K, Borja D, Parel J-M. Semi-automated analysis of ex vivo accommodation simulated OCT crystalline lens image. J Biomed Opt. 2011;16(5):056003.PubMedCrossRefGoogle Scholar
  55. 55.
    Binder S, Falkner-Radler CI, Hauger C, Phd HM, Glittenberg C. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina. 2011 Jan 26 [Epub ahead of print].Google Scholar
  56. 56.
    Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011;52(6):3153–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Koopmans SA, Terwee T, van Kooten TG. Prevention of capsular opacification after accommodative lens refilling surgery in rabbits. Biomaterials. 2011;32(25):5743–55.PubMedCrossRefGoogle Scholar
  58. 58.
    Parrish II RK. Bascom palmer eye institute atlas of ophthalmology. Philadelphia, PA: Current Medicine; 1999.Google Scholar
  59. 59.
    Von Helmholtz H. Mechanism of accommodation. In: Southall JPC, editor. Helmholtz’s treatise on physiological optics (trans: Southall in 1924, original German in 1909); 1962.Google Scholar
  60. 60.
    Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology. 1999;106(5):863–72.PubMedCrossRefGoogle Scholar
  61. 61.
    Strenk S, Semmlow J, DeMarco J. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci. 1999;40:1162–9.PubMedGoogle Scholar
  62. 62.
    Fisher RF. The elastic constants of the human lens. J Physiol. 1971;212(1):147–80.PubMedGoogle Scholar
  63. 63.
    Glasser A, Campbell MC. Presbyopia and the optical changes in the human crystalline lens with age. Vis Res. 1998;38(2):209–29.PubMedCrossRefGoogle Scholar
  64. 64.
    Myers R, Krueger RR. Novel approaches to correction of presbyopia with laser modification of the crystalline lens. J Refract Surg. 1998;14:136–9.PubMedGoogle Scholar
  65. 65.
    Vogel A, Busch S, Jungnickel K, Birngruber R. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med. 1994;15(1):32–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Krueger RR, Sun XK, Stroh J, Myers R. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology. 2001;108(11):2122–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Krueger RR, Kuszak J, Lubatschowski H, et al. First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J Cataract Refract Surg. 2005;31(12):2386–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Gerten G, Ripken T, Breitenfeld P, et al. In vitro and in vivo investigations on the treatment of presbyopia using femtosecond lasers. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2007;104(1):40–6.CrossRefGoogle Scholar
  69. 69.
    Pierscionek BK. Age-related response of human lenses to stretching forces. Exp Eye Res. 1995;60(3):325–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Glasser A, Campbell MC. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vis Res. 1999;39(11):1991–2015.PubMedCrossRefGoogle Scholar
  71. 71.
    Kuszak JR, Mazurkiewicz M, Zoltoski R. Computer modeling of secondary fiber development and growth: I. Nonprimate lenses. Mol Vis. 2006;12:251–70.PubMedGoogle Scholar
  72. 72.
    Vogel A, Noack J, Huttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B. 2005;81:1015–47.CrossRefGoogle Scholar
  73. 73.
    Loesel FH, Niemz MH, Bille JF, Juhasz T. Laser-induced optical breakdown on hard and soft tissue and its dependence on the pulse duration: experiment and model. IEEE J Quant Electron. 1996;32:1717–22.CrossRefGoogle Scholar
  74. 74.
    Giguere D, Olivie G, Vidal F, et al. Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling. J Opt Soc Am A. 2007;24:1562–8.CrossRefGoogle Scholar
  75. 75.
    Ding L, Blackwell R, Künzler JF, Knox WH. Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining. Opt Exp. 2006;14:11901–9.CrossRefGoogle Scholar
  76. 76.
    Ding L, Cancado LG, Novotny L, et al. Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining. J Opt Soc Am B. 2009;26:595–602.CrossRefGoogle Scholar
  77. 77.
    Ding L, Knox WH, Bühren J, Nagy LJ, Huxlin KR. Intra-tissue Refractive Index Shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator. Invest Ophthalmol Vis Sci. 2008;49:5332–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Ding L, Jani D, Linhardt J, et al. Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers. Opt Exp. 2008;16:21914–21.CrossRefGoogle Scholar
  79. 79.
    Knox WH, Huxlin KR. Writing 3D refractive index modifications in ophthalmic polymer & ocular tissue—a novel means of altering refraction & biomechanics with minimal cellular damage. Engineering the Eye III. Benasque, Spain; 2011.Google Scholar
  80. 80.
    Sahler R, Bille JF, Zhou S, Aguilera R, Schanzlin DJ. Non-invasive in-situ power adjustment of intraocular lenses by refractive index shaping. Ft. Lauderdale, FL: ARVO; 2011.Google Scholar
  81. 81.
    Kim H-C, Härtner S, Hampp N. Single- and two-photon absorption induced photocleavage of dimeric coumarin linkers: Therapeutic versus passive photocleavage in ophthalmologic applications. J Photochem Photobiol A: Chem. 2008;197:239–44.CrossRefGoogle Scholar
  82. 82.
    Hampp N. IOLs controlled by 2-photon processes. Engineering the Eye III. Benasque, Spain; 2011.Google Scholar
  83. 83.
    Nagy LJ, Ding L, Xu L, Knox WH, Huxlin KR. Potentiation of femtosecond laser Intratissue Refractive Index Shaping (IRIS) in the living cornea with sodium fluorescein. Invest Ophthalmol Vis Sci. 2010;51:850–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Li DY, Borkman RF. Photodamage to calf lenses in vitro by excimer laser radiation at 308, 337, and 350 nm. Invest Ophthalmol Vis Sci. 1990;31:2180–4.PubMedGoogle Scholar
  85. 85.
    Vogel A, Capon MR, Asiyo-Vogel MN, Birngruber R. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina. Invest Ophthalmol Vis Sci. 1994;35:3032–44.PubMedGoogle Scholar
  86. 86.
    Xu L, Knox WH, DeMagistris M, Wang N, Huxlin KH. Non-invasive Intra-tissue Refractive Index Shaping (IRIS) of the cornea with blue femtosecond laser light. Invest Ophthalmol Vis Sci. 2011;52(11):8148–55.Google Scholar
  87. 87.
    Babcock HW. Adaptive optics revisited. Science. 1990;249:253–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Lorenz RD. Planetary science: the weather on Titan. Science. 2000;290:467–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis. 1994;11:1949–57.PubMedCrossRefGoogle Scholar
  90. 90.
    Hong X, Thibos LN. Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery. J Refract Surg. 2000;16:S647–50.PubMedGoogle Scholar
  91. 91.
    Mrochen M, Kaemmerer M, Seiler T. Wavefront-guided laser in situ keratomileusis: early results in three eyes. J Refract Surg. 2000;16(2):116–21.PubMedGoogle Scholar
  92. 92.
    Roorda A. Applications of adaptive optics scanning laser ophthalmoscopy. Optom Vis Sci. 2010;87:260–8.PubMedGoogle Scholar
  93. 93.
    Rocha KM, Vabre L, Chateau N, Krueger RR. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator. J Refractive Surg. 2010;26(1):52–6.CrossRefGoogle Scholar
  94. 94.
    Chen Y, Ratnam K, Sundquist SM, Lujan B, Awaquari R, Gudiseva VH, Roorda A, Duncan JL. Cone photoreceptor abnormalities correlate with vision loss in patients with Starguardt disease. Invest Ophthalmol Vis Sci. 2011;52:3281–92.PubMedCrossRefGoogle Scholar
  95. 95.
    Hansen A, Ripken T, Heisterkamp A. Focal spot shaping for femtosecond laser pulse photodisruption through turbid media Trans SPIE, 2011.Google Scholar
  96. 96.
    Shechtman DL, Dunbar MT. The expanding spectrum of vitreomacular traction. Optometry. 2009;80:681–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Karatas M, Ramirez JA, Ophir A. Diabetic vitreopapillary traction and macular oedema. Eye (Lond). 2005;19:676–8.CrossRefGoogle Scholar
  98. 98.
    Chai D, Chaudhary G, Mikula E, Sun H, Juhasz T. 3D finite element model of aqueous outflow to predict the effect of femtosecond laser created partial thickness drainage channels. Lasers Surg Med. 2008;40:188–95.PubMedCrossRefGoogle Scholar
  99. 99.
    Tam J, Roorda A. Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy. J Biomed Opt. 2011;16:036002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ronald R. Krueger
    • 1
  • Jean-Marie A. Parel
    • 2
  • Krystel R. Huxlin
    • 3
  • Wayne H. Knox
    • 4
  • Kristian Hohla
    • 5
  1. 1.Cole Eye Institute, Dept of Refractive SurgeryCleveland Clinic Lerner College of MedicineClevelandUSA
  2. 2.Ophthalmic Biophysics Center, Bascom Palmer Eye InstituteUniversity of Miami School of MedicineMiamiUSA
  3. 3.Flaum Eye InstituteUniversity of RochesterRochesterUSA
  4. 4.The Institute of Optics and Center for Visual SciencesUniversity of RochesterRochesterUSA
  5. 5.Technolas Perfect Vision GmbHMunichGermany

Personalised recommendations