Advertisement

Caveolin-1 in Brain Tumors

  • Rebecca Senetta
  • Paola Cassoni
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Increasing evidences in the last years suggested a possible involvement of caveolin-1 (cav-1) in the biology of brain tumors. In vitro studies on glioma cell lines as well as immuno-phenotyping of primary human gliomas reported that cav-1 expression in brain tumors varies according to the histotype and grade, and could bear prognostic significance in specific tumor subsets. In addition, due to the described irradiation-dependent modulation of cav-1 expression in glioma cells and the presence of data highlighting heterogeneous trafficking dynamics involving the EGFR-cav-1 coupling in solid tumors, it can be envisaged that cav-1 could soon be taken into account in the perspective of novel therapeutic approaches for malignant brain tumors.

Keywords

Brain Tumor High Grade Glioma Glial Tumor Oligodendroglial Tumor Human Glioblastoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298PubMedCrossRefGoogle Scholar
  2. 2.
    Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851PubMedGoogle Scholar
  3. 3.
    Burgermeister E, Liscovitch M, Rocken C et al (2008) Caveats of caveolin-1 in cancer progression. Cancer Lett 268:187–201PubMedCrossRefGoogle Scholar
  4. 4.
    Goetz JG, Lajoie P, Wiseman SM et al (2008) Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 27:715–735PubMedCrossRefGoogle Scholar
  5. 5.
    Lisanti MP, Scherer PE, Tang Z et al (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–235PubMedCrossRefGoogle Scholar
  6. 6.
    Ando T, Ishiguro H, Kimura M et al (2007) The overexpression of caveolin-1 and caveolin-2 correlates with a poor prognosis and tumor progression in esophageal squamous cell carcinoma. Oncol Rep 18:601–609PubMedGoogle Scholar
  7. 7.
    Bender FC, Reymond MA, Bron C et al (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60:5870–5878PubMedGoogle Scholar
  8. 8.
    Campbell L, Gumbleton M, Griffiths DF (2003) Caveolin-1 overexpression predicts poor disease-free survival of patients with clinically confined renal cell carcinoma. Br J Cancer 89:1909–1913PubMedCrossRefGoogle Scholar
  9. 9.
    Karam JA, Lotan Y, Roehrborn CG et al (2007) Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. Prostate 67:614–622PubMedCrossRefGoogle Scholar
  10. 10.
    Lee SW, Reimer CL, Oh P et al (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397PubMedCrossRefGoogle Scholar
  11. 11.
    Phuoc NB, Ehara H, Gotoh T et al (2007) Immunohistochemical analysis with multiple antibodies in search of prognostic markers for clear cell renal cell carcinoma. Urology 69:843–848PubMedCrossRefGoogle Scholar
  12. 12.
    Wiechen K, Diatchenko L, Agoulnik A et al (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643PubMedCrossRefGoogle Scholar
  13. 13.
    Wiechen K, Sers C, Agoulnik A et al (2001) Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol 158:833–839PubMedCrossRefGoogle Scholar
  14. 14.
    Witkiewicz AK, Casimiro MC, Dasgupta A et al (2009) Towards a new “stromal-based” classification system for human breast cancer prognosis and therapy. Cell Cycle 8:1654–1658PubMedCrossRefGoogle Scholar
  15. 15.
    Witkiewicz AK, Dasgupta A, Sotgia F et al (2009) An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174:2023–2034PubMedCrossRefGoogle Scholar
  16. 16.
    Cameron PL, Ruffin JW, Bollag R et al (1997) Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 17:9520–9535PubMedGoogle Scholar
  17. 17.
    Ikezu T, Ueda H, Trapp BD et al (1998) Affinity-purification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res 804:177–192PubMedCrossRefGoogle Scholar
  18. 18.
    Megias L, Guerri C, Fornas E et al (2000) Endocytosis and transcytosis in growing astrocytes in primary culture. Possible implications in neural development. Int J Dev Biol 44:209–221PubMedGoogle Scholar
  19. 19.
    Virgintino D, Robertson D, Errede M et al (2002) Expression of caveolin-1 in human brain microvessels. Neuroscience 115:145–152PubMedCrossRefGoogle Scholar
  20. 20.
    Bagnoli M, Tomassetti A, Figini M et al (2000) Downmodulation of caveolin-1 expression in human ovarian carcinoma is directly related to alpha-folate receptor overexpression. Oncogene 19:4754–4763PubMedCrossRefGoogle Scholar
  21. 21.
    Koleske AJ, Baltimore D, Lisanti MP (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 92:1381–1385PubMedCrossRefGoogle Scholar
  22. 22.
    Racine C, Belanger M, Hirabayashi H et al (1999) Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun 255:580–586PubMedCrossRefGoogle Scholar
  23. 23.
    Suzuki T, Suzuki Y, Hanada K et al (1998) Reduction of caveolin-1 expression in tumorigenic human cell hybrids. J Biochem 124:383–388PubMedGoogle Scholar
  24. 24.
    Engelman JA, Zhang XL, Lisanti MP (1998) Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 436:403–410PubMedCrossRefGoogle Scholar
  25. 25.
    Fra AM, Mastroianni N, Mancini M et al (1999) Human caveolin-1 and caveolin-2 are closely linked genes colocalized with WI-5336 in a region of 7q31 frequently deleted in tumors. Genomics 56:355–356PubMedCrossRefGoogle Scholar
  26. 26.
    Hurlstone AF, Reid G, Reeves JR et al (1999) Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene 18:1881–1890PubMedCrossRefGoogle Scholar
  27. 27.
    Lin JC, Scherer SW, Tougas L et al (1996) Detailed deletion mapping with a refined physical map of 7q31 localizes a putative tumor suppressor gene for breast cancer in the region of MET. Oncogene 13:2001–2008PubMedGoogle Scholar
  28. 28.
    Silva WI, Maldonado HM, Lisanti MP et al (1999) Identification of caveolae and caveolin in C6 glioma cells. Int J Dev Neurosci 17:705–714PubMedCrossRefGoogle Scholar
  29. 29.
    Silva WI, Maldonado HM, Velazquez G et al (2005) Caveolin isoform expression during differentiation of C6 glioma cells. Int J Dev Neurosci 23:599–612PubMedCrossRefGoogle Scholar
  30. 30.
    Cameron PL, Liu C, Smart DK et al (2002) Caveolin-1 expression is maintained in rat and human astroglioma cell lines. Glia 37:275–290PubMedCrossRefGoogle Scholar
  31. 31.
    Hayashi K, Matsuda S, Machida K et al (2001) Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 61:2361–2364PubMedGoogle Scholar
  32. 32.
    Bonuccelli G, Casimiro MC, Sotgia F et al (2009) Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. Am J Pathol 174:1650–1662PubMedCrossRefGoogle Scholar
  33. 33.
    Lee H, Park DS, Razani B et al (2002) Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol 161:357–369Google Scholar
  34. 34.
    Mercier I, Bryant KG, Sotgia F et al (2009) Using Caveolin-1 epithelial immunostaining patterns to stratify human breast cancer patients and predict the Caveolin-1 (P132L) mutation. Cell Cycle 8:1396–1401PubMedCrossRefGoogle Scholar
  35. 35.
    Forget MA, Desrosiers RR, Del M et al (2002) The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin Exp Metastasis 19:9–15PubMedCrossRefGoogle Scholar
  36. 36.
    Abulrob A, Giuseppin S, Andrade MF et al (2004) Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 23:6967–6979PubMedCrossRefGoogle Scholar
  37. 37.
    Cassoni P, Senetta R, Castellano I et al (2007) Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas: concrete premises for a new reliable diagnostic marker in gliomas. Am J Surg Pathol 31:760–769PubMedCrossRefGoogle Scholar
  38. 38.
    Barresi V, Buttarelli FR, Vitarelli EE et al (2009) Caveolin-1 expression in diffuse gliomas: correlation with the proliferation index, epidermal growth factor receptor, p53, and 1p/19q status. Hum Pathol 40:1738–1746PubMedCrossRefGoogle Scholar
  39. 39.
    Ichimura K, Ohgaki H, Kleihues P et al (2004) Molecular pathogenesis of astrocytic tumours. J Neurooncol 70:137–160PubMedCrossRefGoogle Scholar
  40. 40.
    Misra A, Pellarin M, Nigro J et al (2005) Array comparative genomic hybridization identifies genetic subgroups in grade 4 human astrocytoma. Clin Cancer Res 11:2907–2918PubMedCrossRefGoogle Scholar
  41. 41.
    Wiltshire RN, Herndon JE 2nd, Lloyd A et al (2004) Comparative genomic hybridization analysis of astrocytomas: prognostic and diagnostic implications. J Mol Diagn 6:166–179PubMedCrossRefGoogle Scholar
  42. 42.
    Nigro JM, Misra A, Zhang L et al (2005) Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res 65:1678–1686PubMedCrossRefGoogle Scholar
  43. 43.
    Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMedCrossRefGoogle Scholar
  44. 44.
    Godard S, Getz G, Delorenzi M et al (2003) Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63:6613–6625PubMedGoogle Scholar
  45. 45.
    Sallinen SL, Sallinen PK, Haapasalo HK et al (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622PubMedGoogle Scholar
  46. 46.
    Martin S, Cosset EC, Terrand J et al (2009) Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta 1793:354–367PubMedCrossRefGoogle Scholar
  47. 47.
    Senetta R, Trevisan E, Ruda R et al (2009) Caveolin 1 expression independently predicts shorter survival in oligodendrogliomas. J Neuropathol Exp Neurol 68:425–431PubMedCrossRefGoogle Scholar
  48. 48.
    Iwamoto FM, Nicolardi L, Demopoulos A et al (2008) Clinical relevance of 1p and 19q deletion for patients with WHO grade 2 and 3 gliomas. J Neurooncol 88:293–298PubMedCrossRefGoogle Scholar
  49. 49.
    Kujas M, Lejeune J, Benouaich-Amiel A et al (2005) Chromosome 1p loss: a favorable prognostic factor in low-grade gliomas. Ann Neurol 58:322–326PubMedCrossRefGoogle Scholar
  50. 50.
    Mariani L, Deiana G, Vassella E et al (2006) Loss of heterozygosity 1p36 and 19q13 is a prognostic factor for overall survival in patients with diffuse WHO grade 2 gliomas treated without chemotherapy. J Clin Oncol 24:4758–4763PubMedCrossRefGoogle Scholar
  51. 51.
    Weller M, Berger H, Hartmann C et al (2007) Combined 1p/19q loss in oligodendroglial tumors: predictive or prognostic biomarker? Clin Cancer Res 13:6933–6937PubMedCrossRefGoogle Scholar
  52. 52.
    Cairncross G, Berkey B, Shaw E et al (2006) Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 24:2707–2714PubMedCrossRefGoogle Scholar
  53. 53.
    van den Bent MJ, Carpentier AF, Brandes AA et al (2006) Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 24:2715–2722PubMedCrossRefGoogle Scholar
  54. 54.
    Kouwenhoven MC, Kros JM, French PJ et al (2006) 1p/19q loss within oligodendroglioma is predictive for response to first line temozolomide but not to salvage treatment. Eur J Cancer 42:2499–2503PubMedCrossRefGoogle Scholar
  55. 55.
    Jodoin J, Demeule M, Fenart L et al (2003) P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem 87:1010–1023PubMedCrossRefGoogle Scholar
  56. 56.
    Song L, Ge S, Pachter JS (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109:1515–1523PubMedCrossRefGoogle Scholar
  57. 57.
    Regina A, Jodoin J, Khoueir P et al (2004) Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J Neurosci Res 75:291–299PubMedCrossRefGoogle Scholar
  58. 58.
    Engelman JA, Wykoff CC, Yasuhara S et al (1997) Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 272:16374–16381PubMedCrossRefGoogle Scholar
  59. 59.
    Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648PubMedCrossRefGoogle Scholar
  60. 60.
    Brown G, Rixon HW, Sugrue RJ (2002) Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol 83:1841–1850PubMedGoogle Scholar
  61. 61.
    Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol 288:C494–C506CrossRefGoogle Scholar
  62. 62.
    Hurtt MR, Moossy J, Donovan-Peluso M et al (1992) Amplification of epidermal growth factor receptor gene in gliomas: histopathology and prognosis. J Neuropathol Exp Neurol 51:84–90PubMedCrossRefGoogle Scholar
  63. 63.
    Lo HW, Cao X, Zhu H et al (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14:6042–6054PubMedCrossRefGoogle Scholar
  64. 64.
    Schlegel J, Merdes A, Stumm G et al (1994) Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer 56:72–77PubMedCrossRefGoogle Scholar
  65. 65.
    Schlegel J, Stumm G, Brandle K et al (1994) Amplification and differential expression of members of the erbB-gene family in human glioblastoma. J Neurooncol 22:201–207PubMedCrossRefGoogle Scholar
  66. 66.
    Mendrzyk F, Korshunov A, Benner A et al (2006) Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12:2070–2079PubMedCrossRefGoogle Scholar
  67. 67.
    Khan EM, Heidinger JM, Levy M et al (2006) Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 281:14486–14493PubMedCrossRefGoogle Scholar
  68. 68.
    Senetta R, Miracco C, Lanzafame S et al (2011) Epidermal growth factor receptor and caveolin-1 coexpression identifies adult supratentorial ependymomas with rapid unfavourable outcomes. Neuro Oncol 13:176–183PubMedCrossRefGoogle Scholar
  69. 69.
    Huang F, Reeves K, Han X et al (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67:2226–2238PubMedCrossRefGoogle Scholar
  70. 70.
    Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609PubMedCrossRefGoogle Scholar
  71. 71.
    Dittmann K, Mayer C, Kehlbach R et al (2008) Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 7:69PubMedCrossRefGoogle Scholar
  72. 72.
    Wang J, Wakeman TP, Lathia JD et al (2010) Notch promotes radioresistance of glioma stem cells. Stem cells 28:17-28Google Scholar
  73. 73.
    Golding SE, Morgan RN, Adams BR et al (2009) Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 8:730–738PubMedCrossRefGoogle Scholar
  74. 74.
    Mukherjee B, McEllin B, Camacho CV et al (2009) EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 69:4252–4259PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biomedical Sciences and Human OncologyUniversity of TurinTurinItaly

Personalised recommendations