Skip to main content

Local and Distant Effects of Caveolin-1 on Prostate Cancer Progression

  • Chapter
  • First Online:
Caveolins in Cancer Pathogenesis, Prevention and Therapy

Abstract

Multiple studies have demonstrated overexpression of caveolin-1 (Cav-1) in prostate cancer (PCa) cells and its association with disease progression. In PCa cells, Cav-1 serves multiple diverse functions that appear to be unique in tumor biology. Within those, elevated Cav-1 may lead to the formation of aberrant signaling scaffolds and may actively participate as a signaling molecule. In addition, overexpression of Cav-1 can induce mRNA levels for specific growth factors (GFs), including vascular endothelial GF, transforming GF-β1, and fibroblast GF2, through Akt activities. Importantly, these specific GFs can, in turn, stimulate expression of Cav-1. It is notable that Cav-1 is secreted by PCa cells and that secreted Cav-1 can be taken up by adjacent PCa cells and tumor-associated endothelial cells, through which the tumor-promoting activities of Cav-1 “spread” throughout the tumor microenvironment. Because secreted Cav-1 can enter the blood, the tumor-promoting effects of Cav-1 also manifest at distant sites of metastasis. The pervasive effects of Cav-1 lead to the establishment of a positive-feedback loop that promotes PCa progression through unprecedented effects on the local and metastatic tumor microenvironments. This chapter is a brief discussion of the complex, context-dependent activities of Cav-1, and delineation of its oncogenic functions within the context of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldred MA, Ginn-Pease ME, Morrison CD et al (2003) Caveolin-1 and caveolin-2, together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Res 63(11):2864–2871

    PubMed  CAS  Google Scholar 

  2. Ayala G, Satoh T, Li R et al (2006) Biological response determinants in HSV-tk + ganciclovir gene therapy for prostate cancer. Mol Ther 13(4):716–728

    Article  PubMed  CAS  Google Scholar 

  3. Ayala GE, Dai H, Tahir SA et al (2006) Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res 66(10):5159–5164

    Article  PubMed  CAS  Google Scholar 

  4. Bachmann N, Haeusler J, Luedeke M et al (2008) Expression changes of CAV1 and EZH2, located on 7q31 approximately q36, are rarely related to genomic alterations in primary prostate carcinoma. Cancer Genet Cytogenet 182(2):103–110

    Article  PubMed  CAS  Google Scholar 

  5. Bartz R, Zhou J, Hsieh JT et al (2008) Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. Int J Cancer 122(3):520–525

    Article  PubMed  CAS  Google Scholar 

  6. Bender FC, Reymond MA, Bron C et al (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60(20):5870–5878

    PubMed  CAS  Google Scholar 

  7. Cantiani L, Manara MC, Zucchini C et al (2007) Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res 67(16):7675–7685

    Article  PubMed  CAS  Google Scholar 

  8. Cao G, Yang G, Timme TL et al (2003) Disruption of the caveolin-1 gene impairs renal calcium reabsorption and leads to hypercalciuria and urolithiasis. Am J Pathol 162(4):1241–1248

    Article  PubMed  CAS  Google Scholar 

  9. Capozza F, Williams TM, Schubert W et al (2003) Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am J Pathol 162(6):2029–2039

    Article  PubMed  CAS  Google Scholar 

  10. Carrion R, Morgan BE, Tannenbaum M et al (2003) Caveolin expression in adult renal tumors. Urol Oncol 21(3):191–196

    Article  PubMed  CAS  Google Scholar 

  11. Cash J, Korchnak A, Gorman J et al (2007) VEGF transcription and mRNA stability are altered by WT1 not DDS(R384W) expression in LNCaP cells. Oncol Rep 17(6):1413–1419

    PubMed  CAS  Google Scholar 

  12. Chung LW, Huang WC, Sung SY et al (2006) Stromal-epithelial interaction in prostate cancer progression. Clin Genitourin Cancer 5(2):162–170

    Article  PubMed  Google Scholar 

  13. Cohen AW, Hnasko R, Schubert W et al (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84(4):1341–1379

    Article  PubMed  CAS  Google Scholar 

  14. Couet J, Li S, Okamoto T et al (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272(10):6525–6533

    Article  PubMed  CAS  Google Scholar 

  15. Cui J, Rohr LR, Swanson G et al (2001) Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate 46(3):249–256

    Article  PubMed  CAS  Google Scholar 

  16. Dall’era MA, Cooperberg MR, Chan JM et al (2008) Active surveillance for early-stage prostate cancer: review of the current literature. Cancer 112(8):1650–1659

    Article  PubMed  Google Scholar 

  17. Davidson B, Nesland JM, Goldberg I et al (2001) Caveolin-1 expression in advanced-stage ovarian carcinoma – a clinicopathologic study. Gynecol Oncol 81(2):166–171

    Article  PubMed  CAS  Google Scholar 

  18. Di Vizio D, Adam RM, Kim J et al (2008) Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle 7(14):2257–2267

    Article  PubMed  CAS  Google Scholar 

  19. Di Vizio D, Kim J, Hager MH et al (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69(13):5601–5609

    Article  PubMed  CAS  Google Scholar 

  20. Di Vizio D, Morello M, Sotgia F et al (2009) An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle 8(15):2420–2424

    Article  PubMed  Google Scholar 

  21. Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293(5539):2449–2452

    Article  PubMed  CAS  Google Scholar 

  22. Efstathiou E, Troncoso P, Wen S et al (2007) Initial modulation of the tumor microenvironment accounts for thalidomide activity in prostate cancer. Clin Cancer Res 13(4):1224–1231

    Article  PubMed  CAS  Google Scholar 

  23. Elsheikh SE, Green AR, Rakha EA et al (2008) Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer 99(2):327–334

    Article  PubMed  CAS  Google Scholar 

  24. Engelman JA, Zhang XL, Lisanti MP (1998) Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 436(3):403–410

    Article  PubMed  CAS  Google Scholar 

  25. Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17(22):6633–6648

    Article  PubMed  CAS  Google Scholar 

  26. Gandellini P, Folini M, Longoni N et al (2009) miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 69(6):2287–2295

    Article  PubMed  CAS  Google Scholar 

  27. Garcia S, Dales JP, Charafe-Jauffret E et al (2007) Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol 38(6):830–841

    Article  PubMed  CAS  Google Scholar 

  28. Glenney JR Jr, Zokas L (1989) Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108(6):2401–2408

    Article  PubMed  CAS  Google Scholar 

  29. Goetz JG, Lajoie P, Wiseman SM et al (2008) Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 27(4):715–735

    Article  PubMed  CAS  Google Scholar 

  30. Goto T, Nguyen BP, Nakano M et al (2008) Utility of Bcl-2, P53, Ki-67, and caveolin-1 immunostaining in the prediction of biochemical failure after radical prostatectomy in a Japanese population. Urology 72(1):167–171

    Article  PubMed  Google Scholar 

  31. Hayashi K, Matsuda S, Machida K et al (2001) Invasion activating caveolin-1 mutation in human schirrhous breast cancer. Cancer Res 61:2361–2364

    PubMed  CAS  Google Scholar 

  32. Ho CC, Huang PH, Huang HY et al (2002) Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 161(5):1647–1656

    Article  PubMed  CAS  Google Scholar 

  33. Horiguchi A, Asano T, Asakuma J et al (2004) Impact of caveolin-1 expression on clinicopathological parameters in renal cell carcinoma. J Urol 172(2):718–722

    Article  PubMed  CAS  Google Scholar 

  34. Hu YC, Lam KY, Law S et al (2001) Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin Cancer Res 7(11):3519–3525

    PubMed  CAS  Google Scholar 

  35. Hung KF, Lin SC, Liu CJ et al (2003) The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med 32(8):461–467

    Article  PubMed  CAS  Google Scholar 

  36. Hurlstone AF, Reid G, Reeves JR et al (1999) Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene 18(10):1881–1890

    Article  PubMed  CAS  Google Scholar 

  37. Insel PA, Patel HH (2007) Do studies in caveolin-knockouts teach us about physiology and pharmacology or instead, the ways mice compensate for ‘lost proteins’? Br J Pharmacol 150(3):251–254

    Article  PubMed  CAS  Google Scholar 

  38. Ito Y, Yoshida H, Nakano K et al (2002) Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br J Cancer 86(6):912–916

    Article  PubMed  CAS  Google Scholar 

  39. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  40. Joo HJ, Oh DK, Kim YS et al (2004) Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 93(3):291–296

    Article  PubMed  CAS  Google Scholar 

  41. Joshi B, Strugnell SS, Goetz JG et al (2008) Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 68(20):8210–8220

    Article  PubMed  CAS  Google Scholar 

  42. Josko J, Mazurek M (2004) Transcription factors having impact on vascular endothelial growth factor VEGF gene expression in angiogenesis. Med Sci Monit 10(4):RA89–RA98

    PubMed  CAS  Google Scholar 

  43. Kanies CL, Smith JJ, Kis C et al (2008) Oncogenic Ras and transforming growth factor-beta synergistically regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition. Mol Cancer Res 6(7):1124–1136

    Article  PubMed  CAS  Google Scholar 

  44. Karam JA, Lotan Y, Roehrborn CG et al (2007) Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. Prostate 67(6):614–622

    Article  PubMed  Google Scholar 

  45. Kato K, Hida Y, Miyamoto M et al (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94(4):929–933

    Article  PubMed  CAS  Google Scholar 

  46. Kato T, Miyamoto M, Kato K et al (2004) Difference of caveolin-1 expression pattern in human lung neoplastic tissue. Atypical adenomatous hyperplasia, adenocarcinoma and squamous cell carcinoma. Cancer Lett 214(1):121–128

    Article  PubMed  CAS  Google Scholar 

  47. Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11(4):709–724

    Article  PubMed  CAS  Google Scholar 

  48. Lee SW, Reimer CL, Oh P et al (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16(11):1391–1397

    Article  PubMed  CAS  Google Scholar 

  49. Li L, Ittmann MM, Ayala G et al (2005) The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis 8(2):108–118

    Article  PubMed  CAS  Google Scholar 

  50. Li L, Ren C, Yang G et al (2009) Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res 7(11):1781–1791

    Article  PubMed  CAS  Google Scholar 

  51. Li L, Ren CH, Tahir SA et al (2003) Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 23(24):9389–9404

    Article  PubMed  CAS  Google Scholar 

  52. Li L, Yang G, Ebara S et al (2001) Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61(11):4386–4392

    PubMed  CAS  Google Scholar 

  53. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271(46):29182–29190

    Article  PubMed  CAS  Google Scholar 

  54. Liu P, Li WP, Machleidt T et al (1999) Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1(6):369–375

    Article  PubMed  CAS  Google Scholar 

  55. Llorente A, de Marco MC, Alonso MA (2004) Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. J Cell Sci 117(pt 22):5343–5351

    Article  PubMed  CAS  Google Scholar 

  56. Loblaw DA, Virgo KS, Nam R et al (2007) Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 25(12):1596–1605

    Article  PubMed  CAS  Google Scholar 

  57. Lu ML, Schneider MC, Zheng Y et al (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276(16):13442–13451

    Article  PubMed  CAS  Google Scholar 

  58. Lu Q, Zhang J, Allison R et al (2009) Identification of extracellular delta-catenin accumulation for prostate cancer detection. Prostate 69(4):411–418

    Article  PubMed  CAS  Google Scholar 

  59. Ma WW, Adjei AA (2009) Novel agents on the horizon for cancer therapy. CA Cancer J Clin 59(2):111–137

    Article  PubMed  Google Scholar 

  60. Mercier I, Casimiro MC, Wang C et al (2008) Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther 7(8):1212–1225

    Article  PubMed  CAS  Google Scholar 

  61. Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101(4):873–886

    Article  PubMed  CAS  Google Scholar 

  62. Nasu Y, Timme TL, Yang G et al (1998) Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells [see comments]. Nat Med 4(9):1062–1064

    Article  PubMed  CAS  Google Scholar 

  63. Nupponen NN, Kakkola L, Koivisto P et al (1998) Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153(1):141–148

    Article  PubMed  CAS  Google Scholar 

  64. Okamoto T, Schlegel A, Scherer PE et al (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273(10):5419–5422

    Article  PubMed  CAS  Google Scholar 

  65. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391

    Article  PubMed  CAS  Google Scholar 

  66. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351(15):1513–1520

    Article  PubMed  CAS  Google Scholar 

  67. Pisters LL, Pettaway CA, Troncoso P et al (2004) Evidence that transfer of functional p53 protein results in increased apoptosis in prostate cancer. Clin Cancer Res 10(8):2587–2593

    Article  PubMed  CAS  Google Scholar 

  68. Rajjayabun PH, Garg S, Durkan GC et al (2001) Caveolin-1 expression is associated with high-grade bladder cancer. Urology 58(5):811–814

    Article  PubMed  CAS  Google Scholar 

  69. Razandi M, Alton G, Pedram A et al (2003) Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 23(5):1633–1646

    Article  PubMed  CAS  Google Scholar 

  70. Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276(41):38121–38138

    PubMed  CAS  Google Scholar 

  71. Razani B, Lisanti MP (2001) Caveolin-deficient mice: insights into caveolar function human disease. J Clin Invest 108(11):1553–1561

    PubMed  CAS  Google Scholar 

  72. Reynolds AR, Kyprianou N (2006) Growth factor signalling in prostatic growth: significance in tumour development and therapeutic targeting. Br J Pharmacol 147(suppl 2):S144–S152

    Article  PubMed  CAS  Google Scholar 

  73. Sagara Y, Mimori K, Yoshinaga K et al (2004) Clinical significance of caveolin-1, caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 91(5):959–965

    PubMed  CAS  Google Scholar 

  74. Sanchez-Carbayo M, Socci ND, Charytonowicz E et al (2002) Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res 62(23):6973–6980

    PubMed  CAS  Google Scholar 

  75. Satoh T, Yang G, Egawa S et al (2003) Caveolin-1 expression is a predictor of recurrence-free survival in pT2N0 prostate carcinoma diagnosed in Japanese patients. Cancer 97(5):1225–1233

    Article  PubMed  CAS  Google Scholar 

  76. Schlegel A, Schwab RB, Scherer PE et al (1999) A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J Biol Chem 274(32):22660–22667

    Article  PubMed  CAS  Google Scholar 

  77. Shatz M, Liscovitch M (2008) Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol 84(3):177–189

    Article  PubMed  CAS  Google Scholar 

  78. Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275(5 pt 1):L843–L851

    PubMed  CAS  Google Scholar 

  79. Shi L, Chen XM, Wang L et al (2007) Expression of caveolin-1 in mucoepidermoid carcinoma of the salivary glands: correlation with vascular endothelial growth factor, microvessel density, and clinical outcome. Cancer 109(8):1523–1531

    Article  PubMed  CAS  Google Scholar 

  80. Smart EJ, Graf GA, McNiven MA et al (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19(11):7289–7304

    PubMed  CAS  Google Scholar 

  81. Solomon KR, Danciu TE, Adolphson LD et al (2000) Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15(12):2380–2390

    Article  PubMed  CAS  Google Scholar 

  82. Song QH, Klepeis VE, Nugent MA et al (2002) TGF-beta1 regulates TGF-beta1 and FGF-2 mRNA expression during fibroblast wound healing. Mol Pathol 55(3):164–176

    Article  PubMed  CAS  Google Scholar 

  83. Sonpavde G, Chi KN, Powles T et al (2007) Neoadjuvant therapy followed by prostatectomy for clinically localized prostate cancer. Cancer 110(12):2628–2639

    Article  PubMed  CAS  Google Scholar 

  84. Sternberg PW, Schmid SL (1999) Caveolin, cholesterol and Ras signalling. Nat Cell Biol 1(2):E35–E37

    Article  PubMed  CAS  Google Scholar 

  85. Suzuoki M, Miyamoto M, Kato K et al (2002) Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 87(10):1140–1144

    Article  PubMed  CAS  Google Scholar 

  86. Tahir SA, Frolov A, Hayes TG, Mims MP, Miles BJ, Lerner SP, Wheeler TM, Ayala G, Thompson TC, Kadmon D (2006) Preoperative serum caveolin-1 as a prognostic marker for recurrence in a radical prostatectomy cohort. Clin Cancer Res 12(16):4872–4875

    Article  PubMed  CAS  Google Scholar 

  87. Tahir SA, Park S, Thompson TC (2009) Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 8(23):2286–2296

    PubMed  Google Scholar 

  88. Tahir SA, Ren C, Timme TL et al (2003) Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 9(10 pt 1):3653–3659

    PubMed  CAS  Google Scholar 

  89. Tahir SA, Yang G, Ebara S et al (2001) Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res 61(10):3882–3885

    PubMed  CAS  Google Scholar 

  90. Tahir SA, Yang G, Goltsov AA et al (2008) Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Res 68(3):731–739

    Article  PubMed  CAS  Google Scholar 

  91. Terris B, Blaveri E, Crnogorac-Jurcevic T et al (2002) Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160(5):1745–1754

    Article  PubMed  CAS  Google Scholar 

  92. Thompson TC, Park SH, Timme TL et al (1995) Loss of p53 function leads to metastasis in ras + myc-initiated mouse prostate cancer. Oncogene 10(5):869–879

    PubMed  CAS  Google Scholar 

  93. Thompson TC, Tahir SA, Li L et al (2010) The role of caveolin-1 in prostate cancer: clinical implications. Prostate Cancer Prostatic Dis 13(1):6–11

    Article  PubMed  CAS  Google Scholar 

  94. Tirado OM, Mateo-Lozano S, Villar J et al (2006) Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing’s sarcoma cells. Cancer Res 66(20):9937–9947

    Article  PubMed  CAS  Google Scholar 

  95. Touriol C, Morillon A, Gensac MC et al (1999) Expression of human fibroblast growth factor 2 mRNA is post-transcriptionally controlled by a unique destabilizing element present in the 3′-untranslated region between alternative polyadenylation sites. J Biol Chem 274(30):21402–21408

    Article  PubMed  CAS  Google Scholar 

  96. Watanabe M, Yang G, Cao G et al (2009) Functional analysis of secreted caveolin-1 in mouse models of prostate cancer progression. Mol Cancer Res 7(9):1446–1455

    Article  PubMed  CAS  Google Scholar 

  97. Weiner GJ (2007) Monoclonal antibody mechanisms of action in cancer. Immunol Res 39(1–3):271–278

    Article  PubMed  CAS  Google Scholar 

  98. Wiechen K, Sers C, Agoulnik A et al (2001) Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol 158(3):833–839

    Article  PubMed  CAS  Google Scholar 

  99. Wikman H, Seppanen JK, Sarhadi VK et al (2004) Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. J Pathol 203(1):584–593

    Article  PubMed  CAS  Google Scholar 

  100. Williams TM, Cheung MW, Park DS et al (2003) Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 14(3):1027–1042

    Article  PubMed  CAS  Google Scholar 

  101. Williams TM, Hassan GS, Li J et al (2005) Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in TRAMP mice. J Biol Chem 10:1074

    Google Scholar 

  102. Williams TM, Lee H, Cheung MW et al (2004) Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Biol Chem 279(23):24745–24756

    Article  PubMed  CAS  Google Scholar 

  103. Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288(3):C494–C506

    Article  PubMed  CAS  Google Scholar 

  104. Wu D, Foreman TL, Gregory CW et al (2002) Protein kinase cepsilon has the potential to advance the recurrence of human prostate cancer. Cancer Res 62(8):2423–2429

    PubMed  CAS  Google Scholar 

  105. Yang G, Addai J, Ittmann M et al (2000) Elevated caveolin-1 levels in African-American versus white-American prostate cancer. Clin Cancer Res 6(9):3430–3433

    PubMed  CAS  Google Scholar 

  106. Yang G, Addai J, Wheeler TM et al (2007) Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum Pathol 38(11):1688–1695

    Article  PubMed  CAS  Google Scholar 

  107. Yang G, Timme TL, Naruishi K et al (2008) Mice with cav-1 gene disruption have benign stromal lesions and compromised epithelial differentiation. Exp Mol Pathol 84(2):131–140

    Article  PubMed  CAS  Google Scholar 

  108. Yang G, Truong LD, Timme TL et al (1998) Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 4(8):1873–1880

    PubMed  CAS  Google Scholar 

  109. Yang G, Truong LD, Wheeler TM et al (1999) Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59(22):5719–5723

    PubMed  CAS  Google Scholar 

  110. Yoo SH, Park YS, Kim HR et al (2003) Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer 42(2):195–202

    Article  PubMed  Google Scholar 

  111. Zhang X, Ling MT, Wang Q et al (2007) Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. J Biol Chem 282(46):33284–33294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Institutes of Health grant R01 CA68814, P30 CA016672, and Department of Defense grant DAMD PC051247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thompson, T.C. et al. (2012). Local and Distant Effects of Caveolin-1 on Prostate Cancer Progression. In: Mercier, I., Jasmin, JF., Lisanti, M. (eds) Caveolins in Cancer Pathogenesis, Prevention and Therapy. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1001-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1001-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1000-3

  • Online ISBN: 978-1-4614-1001-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics