Skip to main content

Antimicrobial Peptides in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis
  • 3096 Accesses

Abstract

Antimicrobial peptides are one of the most ancient forms of host defense in nature. In the mammalian intestine, clear and compelling evidence supports that antimicrobial peptides play two fundamental roles: protection from enteric pathogens and shaping the composition of the colonizing microbiota. These functions likely hold relevance to host–microbe interactions that underlie inflammatory bowel disease (IBD) pathogenesis. Epithelial cells of the human intestine express a collection of antimicrobial peptides that have overlapping and complementary activities. These peptides have substantial influence on the intestinal microbiota. Prevailing theories on the pathogenesis of IBD invoke a role for the detrimental effects of intestinal microbes in the initiation and/or propagation of mucosal inflammation. The most abundant antimicrobial peptides in the human intestine are α(alpha)-defensin peptides, most notably human defensin (HD)-5 and HD6. Other abundant polypeptides, which are larger in size but with fundamentally similar physiological roles, are lysozyme, secretory phospholipase A2, and the C-type lectin RegIIIα(alpha). Specialized epithelial cells named Paneth cells produce and secrete vast quantities of these various antimicrobial peptides. Evidence supports that reduced Paneth cell α(alpha)-defensin expression may be a key factor in the pathogenesis of ileal Crohn’s disease, a subgroup of IBD. Furthermore, several susceptibility genes for IBD may manifest their effects, in part, through compromise of Paneth cell antimicrobial peptide production or function. For example, the microbial sensor NOD-2, the autophagy protein ATG16L1, the endoplasmic reticulum stress responder XBP-1, the calcium-dependent potassium channel KCa3.1 and the transcription factor TCF4 are all important in Paneth cell function. While not proven, it is likely that the Paneth cell dysfunction, which may result from variants in genes encoding these or other Paneth cell proteins, may substantially contribute to IBD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    PubMed  CAS  Google Scholar 

  2. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8(6):458–66.

    PubMed  CAS  Google Scholar 

  3. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.

    PubMed  CAS  Google Scholar 

  4. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–94.

    PubMed  CAS  Google Scholar 

  5. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010;8(8):564–77.

    PubMed  CAS  Google Scholar 

  6. Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol. 2010;26(4):327–31.

    PubMed  Google Scholar 

  7. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.

    PubMed  CAS  Google Scholar 

  8. Packey CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis. 2009;22(3):292–301.

    PubMed  Google Scholar 

  9. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

    PubMed  CAS  Google Scholar 

  10. Wehkamp J, Fellermann K, Herrlinger K, Bevins CL, Stange EF. Defensins in gastrointestinal diseases. Nat Clin Pract (Gastroenterol Hepatol). 2005;2:406–15.

    CAS  Google Scholar 

  11. Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76–83.

    PubMed  CAS  Google Scholar 

  12. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides, and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9(5):356–68.

    PubMed  CAS  Google Scholar 

  13. Scupham AJ, Presley LL, Wei B, et al. Abundant and diverse fungal microbiota in the murine intestine. Appl Environ Microbiol. 2006;72(1):793–801.

    PubMed  CAS  Google Scholar 

  14. Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8.

    PubMed  CAS  Google Scholar 

  15. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307.

    PubMed  CAS  Google Scholar 

  16. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    PubMed  Google Scholar 

  17. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.

    PubMed  Google Scholar 

  18. Sekirov I, Finlay BB. The role of the intestinal microbiota in enteric infection. J Physiol. 2009;587(Pt 17):4159–67.

    PubMed  CAS  Google Scholar 

  19. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.

    PubMed  CAS  Google Scholar 

  20. Chung HC, Kasper DL. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol. 2010;22(4):455–60.

    PubMed  CAS  Google Scholar 

  21. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.

    PubMed  CAS  Google Scholar 

  22. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10(10):735–44.

    PubMed  CAS  Google Scholar 

  23. Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol. 2010;28:623–67.

    PubMed  CAS  Google Scholar 

  24. Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330(6012):1768–73.

    PubMed  CAS  Google Scholar 

  25. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126:1620–33.

    PubMed  Google Scholar 

  26. Chacon O, Bermudez LE, Barletta RG. Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu Rev Microbiol. 2004;58:329–63.

    PubMed  CAS  Google Scholar 

  27. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104(34):13780–5.

    PubMed  CAS  Google Scholar 

  28. Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29.

    PubMed  CAS  Google Scholar 

  29. Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8(3):292–300.

    PubMed  CAS  Google Scholar 

  30. Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426–9.

    PubMed  CAS  Google Scholar 

  31. Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122(1):44–54.

    PubMed  Google Scholar 

  32. Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–21.

    PubMed  Google Scholar 

  33. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–9.

    PubMed  Google Scholar 

  34. Baumgart M, Dogan B, Rishniw M, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–18.

    PubMed  CAS  Google Scholar 

  35. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–6.

    PubMed  CAS  Google Scholar 

  36. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128(4):891–906.

    PubMed  CAS  Google Scholar 

  37. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–76.

    PubMed  Google Scholar 

  38. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131(1):33–45.

    PubMed  CAS  Google Scholar 

  39. Biswas A, Liu YJ, Hao L, et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci U S A. 2010;107(33):14739–44.

    PubMed  CAS  Google Scholar 

  40. Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134(5):743–56.

    PubMed  CAS  Google Scholar 

  41. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140(6):859–70.

    PubMed  CAS  Google Scholar 

  42. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–5.

    PubMed  Google Scholar 

  43. Ochman H, Worobey M, Kuo CH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8(11):e1000546.

    PubMed  Google Scholar 

  44. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    PubMed  CAS  Google Scholar 

  45. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23.

    PubMed  CAS  Google Scholar 

  46. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11):e280.

    PubMed  Google Scholar 

  47. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2006;127(2):423–33.

    PubMed  CAS  Google Scholar 

  48. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP. Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol. 2010;2010:53–66.

    Google Scholar 

  49. Fraune S, Augustin R, Anton-Erxleben F, et al. In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci USA. 2010;107(42):18067–72.

    PubMed  CAS  Google Scholar 

  50. Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008;28(6):740–50.

    PubMed  CAS  Google Scholar 

  51. Suzuki K, Meek B, Doi Y, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004;101:1981–6.

    PubMed  CAS  Google Scholar 

  52. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39.

    PubMed  CAS  Google Scholar 

  53. Hapfelmeier S, Lawson MAE, Slack E, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328(5986):1705–9.

    PubMed  CAS  Google Scholar 

  54. Stecher B, Robbiani R, Walker AW, et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007;5(10):2177–89.

    PubMed  CAS  Google Scholar 

  55. Santos RL, Raffatellu M, Bevins CL, et al. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 2009;17:498–506.

    PubMed  CAS  Google Scholar 

  56. Fischbach MA, Lin HN, Zhou L, et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Nat Acad Sci USA. 2006;103(44):16502–7.

    CAS  Google Scholar 

  57. Raffatellu M, George MD, Akiyama Y, et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe. 2009;5(5):476–86.

    PubMed  CAS  Google Scholar 

  58. Hornsby MJ, Huff JL, Kays RJ, Canfield DR, Bevins CL, Solnick JV. Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner. Gastroenterology. 2008;134(4):1049–57.

    PubMed  CAS  Google Scholar 

  59. Charroux B, Royet J. Drosophila immune response From systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract. Fly. 2010;4(1):40–7.

    PubMed  CAS  Google Scholar 

  60. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.

    PubMed  CAS  Google Scholar 

  61. Lehrer RI. Primate defensins. Nat Rev Microbiol. 2004;2:727–38.

    PubMed  CAS  Google Scholar 

  62. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005;6:551–7.

    PubMed  CAS  Google Scholar 

  63. Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286(5437):113–7.

    PubMed  CAS  Google Scholar 

  64. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature. 2003;422(6931):522–6.

    PubMed  CAS  Google Scholar 

  65. Lynn DJ, Lloyd AT, Fares MA, O’Farrelly C. Evidence of positively selected sites in mammalian alpha-defensins. Mol Biol Evol. 2004;21:819–27.

    PubMed  CAS  Google Scholar 

  66. Ghosh D, Porter EM, Shen B, et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 2002;3:583–90.

    PubMed  CAS  Google Scholar 

  67. Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–28.

    PubMed  CAS  Google Scholar 

  68. de Leeuw E, Li C, Zeng P, et al. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett. 2010;584(8):1543–8.

    PubMed  Google Scholar 

  69. Sass V, Schneider T, Wilmes M, et al. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun. 2010;78(6):2793–800.

    PubMed  CAS  Google Scholar 

  70. Schneider T, Kruse T, Wimmer R, et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science. 2010;328(5982):1168–72.

    PubMed  CAS  Google Scholar 

  71. Ericksen B, Wu Z, Lu W, Lehrer RI. Antibacterial activity and specificity of the six human (alpha)-defensins. Antimicrob Agents Chemother. 2005;49:269–75.

    PubMed  CAS  Google Scholar 

  72. Yang D, Chertov O, Bykovskaia SN, et al. beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525–8.

    PubMed  CAS  Google Scholar 

  73. Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002;23:291–6.

    PubMed  CAS  Google Scholar 

  74. Lehrer RI, Jung G, Ruchala P, Andre S, Gabius HJ, Lu W. Multivalent binding of carbohydrates by the human {alpha}-defensin, HD5. J Immunol. 2009;183(1):480–90.

    PubMed  CAS  Google Scholar 

  75. Lencer WI, Cheung G, Strohmeier GR, et al. Induction of epithelial chloride secretion by channel-forming cryptins 2 and 3. Proc Natl Acad Sci (USA). 1997;94:8585–9.

    CAS  Google Scholar 

  76. Yue G, Merlin D, Selsted ME, Lencer WI, Madara JL, Eaton DC. Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells. Am J Physiol Gastrointest Liver Physiol. 2002;282:G757–65.

    PubMed  CAS  Google Scholar 

  77. Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A(2). Annu Rev Biochem. 2008;77:495–520.

    PubMed  CAS  Google Scholar 

  78. Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A(2) enzymes: lessons from transgenic and knockout mice. Biochimie. 2010;92(6):561–82.

    PubMed  CAS  Google Scholar 

  79. Qu XD, Lloyd KC, Walsh JH, Lehrer RI. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect Immun. 1996;64:5161–5.

    PubMed  CAS  Google Scholar 

  80. Nevalainen TJ, Graham GG, Scott KF. Antibacterial actions of secreted phospholipases A(2). Review. Biochim Biophys Acta: Mol Cell Biol Lipids. 2008;1781(1–2):1–9.

    CAS  Google Scholar 

  81. Harwig SSL, Tan L, Qu X-D, Cho Y, Eisenhauer PB, Lehrer RI. Bactericidal properties of murine intestinal phospholipase A2. J Clin Invest. 1995;95:603–10.

    PubMed  CAS  Google Scholar 

  82. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell. 1995;81:957–66.

    PubMed  CAS  Google Scholar 

  83. Cormier RT, Hong KH, Halberg RB, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet. 1997;17(1):88–91.

    PubMed  CAS  Google Scholar 

  84. Fijneman RJA, Cormier RT. The roles of sPLA2-IIA (Pla2g2a) in cancer of the small and large intestine. Frontiers Biosci. 2008;13:4144–74.

    CAS  Google Scholar 

  85. Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313:1126–30.

    PubMed  CAS  Google Scholar 

  86. Mukherjee S, Partch CL, Lehotzky RE, et al. Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. J Biol Chem. 2009;284(8):4881–8.

    PubMed  CAS  Google Scholar 

  87. Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J Exp Med. 2007;204(8):1891–900.

    PubMed  CAS  Google Scholar 

  88. Lehotzky RE, Partch CL, Mukherjee S, et al. Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A. 2010;107(17):7722–7.

    PubMed  CAS  Google Scholar 

  89. Christa L, Carnot F, Simon MT, et al. HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am J Physiol. 1996;271(6 Pt 1):pG993–1002.

    Google Scholar 

  90. Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102:18129–34.

    PubMed  CAS  Google Scholar 

  91. Ganz T. Iron in innate immunity: starve the invaders. Curr Opin Immunol. 2009;21(1):63–7.

    PubMed  CAS  Google Scholar 

  92. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.

    PubMed  CAS  Google Scholar 

  93. Sunil VR, Patel KJ, Nilsen-Hamilton M, Heck DE, Laskin JD, Laskin DL. Acute endotoxemia is associated with upregulation of lipocalin 24p3/Lcn2 in lung and liver. Exp Mol Pathol. 2007;83(2):177–87.

    PubMed  CAS  Google Scholar 

  94. Huttner KM, Ouellette AJ. A family of defensin-like genes codes for diverse cysteine-rich peptides in mouse Paneth cells. Genomics. 1994;24:99–109.

    PubMed  CAS  Google Scholar 

  95. Hornef MF, Pütsep K, Karlsson J, Refai E, Andersson M. Increased variability of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol. 2004;5:836–43.

    PubMed  CAS  Google Scholar 

  96. Shanahan MT, Tanabe H, Ouellette AJ. Paneth cell {alpha}-defensins in C57BL/6 mice: characterization of strain-specific peptide and gene polymorphisms and vestigial myeloid {alpha}-defensin pseudogenes. Infect Immun. 2011;79(1):459–73.

    PubMed  Google Scholar 

  97. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4:269–73.

    PubMed  CAS  Google Scholar 

  98. Harder J, Schroder J-M. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem. 2002;277(48):46779–84.

    PubMed  CAS  Google Scholar 

  99. Czaran TL, Hoekstra RF, Pagie L. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A. 2002;99(2):786–90.

    PubMed  CAS  Google Scholar 

  100. Duquesne S, Destoumieux-Garzon D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 2007;24(4):708–34.

    PubMed  CAS  Google Scholar 

  101. Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008;81(4):591–606.

    PubMed  CAS  Google Scholar 

  102. Porter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002;59:156–70.

    PubMed  CAS  Google Scholar 

  103. Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010;26(6):547–53.

    PubMed  Google Scholar 

  104. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007;19:70–83.

    PubMed  CAS  Google Scholar 

  105. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA. 2008;105(52):20858–63.

    PubMed  CAS  Google Scholar 

  106. Mastroianni JR, Ouellette AJ. Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem. 2009;284(41):27848–56.

    PubMed  CAS  Google Scholar 

  107. Nieuwenhuis EE, Matsumoto T, Lindenbergh D, et al. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest. 2009;119(5):1241–50.

    PubMed  CAS  Google Scholar 

  108. Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–4.

    PubMed  CAS  Google Scholar 

  109. George MD, Wehkamp J, Kays RJ, et al. In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics. 2008;9:209.

    PubMed  Google Scholar 

  110. Wolfs TG, Derikx JP, Hodin CM, et al. Localization of the lipopolysaccharide recognition complex in the human healthy and inflamed premature and adult gut. Inflamm Bowel Dis. 2010;16(1):68–75.

    PubMed  Google Scholar 

  111. Untersmayr E, Bises G, Starkl P, et al. The high affinity IgE receptor Fc epsilonRI is expressed by human intestinal epithelial cells. PLoS One. 2010;5(2):e9023.

    PubMed  Google Scholar 

  112. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 28 2010. [Epub ahead of print].

    Google Scholar 

  113. Wehkamp J, Stange EF. Paneth’s disease. J Crohns Colitis. 2010;4(5):523–31.

    PubMed  Google Scholar 

  114. Wehkamp J, Harder J, Weichenthal M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004;53:1658–64.

    PubMed  CAS  Google Scholar 

  115. Russell RK, Drummond HE, Nimmo EE, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARDI 5 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11(11):955–64.

    PubMed  Google Scholar 

  116. Seiderer J, Schnitzler F, Brand S, et al. Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol. 2006;41(12):1421–32.

    PubMed  CAS  Google Scholar 

  117. Wehkamp J, Wang G, Kubler I, et al. The Paneth cell {alpha}-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol. 2007;179(5):3109–18.

    PubMed  CAS  Google Scholar 

  118. van Es JH, Jay P, Gregorieff A, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol. 2005;7(4):381–6.

    PubMed  Google Scholar 

  119. Koslowski MJ, Kubler I, Chamaillard M, et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One. 2009;4(2):e4496.

    PubMed  Google Scholar 

  120. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut. 2008;57:903–10.

    PubMed  CAS  Google Scholar 

  121. Bevins CL, Stange EF, Wehkamp J. Decreased Paneth cell defensin expression in ileal Crohn’s disease is independent of inflammation, but linked to the NOD2 1007fs genotype. Gut. 2009;58(6):882–3. discussion 883–884.

    PubMed  CAS  Google Scholar 

  122. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    PubMed  CAS  Google Scholar 

  123. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    PubMed  CAS  Google Scholar 

  124. Ogura Y, Lala S, Xin W, et al. Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut. 2003;52:1591–7.

    PubMed  CAS  Google Scholar 

  125. Petnicki-Ocwieja T, Hrncir T, Liu YJ, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A. 2009;106(37):15813–8.

    PubMed  CAS  Google Scholar 

  126. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.

    PubMed  CAS  Google Scholar 

  127. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    PubMed  CAS  Google Scholar 

  128. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90(4):1383–435.

    PubMed  CAS  Google Scholar 

  129. Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456(7219):259–63.

    PubMed  CAS  Google Scholar 

  130. Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2010;17(1):179–84.

    PubMed  Google Scholar 

  131. Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–45.

    PubMed  CAS  Google Scholar 

  132. Kangro HO, Chong SKF, Hardiman A, Heath RB, Walkersmith JA. A prospective-study of viral and mycoplasma-infections in chronic inflammatory bowel-disease. Gastroenterology. 1990;98(3):549–53.

    PubMed  CAS  Google Scholar 

  133. Simms LA, Doecke JD, Roberts RL, et al. KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol. 2010;105(10):2209–17.

    PubMed  CAS  Google Scholar 

  134. Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ. Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2  +  -activated, intermediate conductance potassium channel. J Biol Chem. 2002;277:3793–800.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Bevins MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bevins, C.L. (2012). Antimicrobial Peptides in Inflammatory Bowel Disease. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0998-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0998-4_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0997-7

  • Online ISBN: 978-1-4614-0998-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics