Advertisement

Intestinal Microbiology and Ecology in Inflammatory Bowel Disease

  • Alan W. Walker
Chapter

Abstract

The human gastrointestinal tract contains a rich and abundant collection of microbes, which is collectively termed the microbiota. Colonization of the human body by microbes appears to occur in a reasonably reproducible manner and the adult microbiota is predominantly composed of just four bacterial phyla. However, within these phyla there are thousands of individual species and strains that are capable of colonizing the human intestinal tract. This complexity is further complicated by the fact that there appears to be only limited overlap in species composition between individuals. Furthermore, within individuals it appears that there are also temporal and spatial fluctuations in species abundance.

During the long co-evolution of humans and their microbiota a mutualistic relationship has developed and under normal circumstances the microbiota is considered to play a number of key roles in the maintenance of host health. However, it is also the source of numerous antigens, meaning that a constant balance must be maintained between the host’s immune system and the microbiota. If this balance breaks down inflammation may result and a number of lines of evidence implicate the intestinal microbiota in the development and progression of inflammatory bowel disease. Indeed there is now increasing evidence that there are distinctive differences in overall microbiota structure, such as reduced bacterial diversity and reduced temporal stability, in individuals with IBD compared to healthy individuals. However, detecting a direct causal link has proved to be more difficult and, at present, there is no conclusive evidence that particular species or distinctive overall microbiota compositions lead to IBD development.

Keywords

Microbiota Microbiome Ecology Taxonomy Inflammatory bowel disease Dysbiosis 

References

  1. 1.
    Dethlefsen L, Eckburg PB, Bik EM, et al. Assembly of the human intestinal microbiota. Trends Ecol Evol. 2006;21:517–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Leser TD, Mølbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol. 2009;11:2194–206.PubMedCrossRefGoogle Scholar
  3. 3.
    Metchnikoff E. The prolongation of life: optimistic studies. New York: G.P. Putnam’s Sons; 1908.Google Scholar
  4. 4.
    Dunne C. Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm Bowel Dis. 2001;7:136–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Bourlioux P, Koletzko B, Guarner F, et al. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am J Clin Nutr. 2003;78:675–83.PubMedGoogle Scholar
  6. 6.
    Hao WL, Lee YK. Microflora of the gastrointestinal tract: a review. Methods Mol Biol. 2004;268:491–502.PubMedGoogle Scholar
  7. 7.
    Hayashi H, Takahashi R, Nishi T, et al. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol. 2005;54:1093–101.PubMedCrossRefGoogle Scholar
  8. 8.
    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62:67–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Harmsen HJM, Raangs GC, He T, et al. Extensive Set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol. 2002;68:2982–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Neish AS. The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect. 2002;4:309–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann Rev Nutr. 2002;22:283–307.CrossRefGoogle Scholar
  12. 12.
    Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2010;PMID: 20668239.Google Scholar
  13. 13.
    Park HK, Shim SS, Kim SY, et al. Molecular analysis of colonized bacteria in a human newborn infant gut. J Microbiol. 2005;43:345–53.PubMedGoogle Scholar
  14. 14.
    Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010;18:298–307.PubMedCrossRefGoogle Scholar
  15. 15.
    Favier CF, Vaughan EE, de Vos WM, et al. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002;68:219–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177.PubMedCrossRefGoogle Scholar
  17. 17.
    Rajilić-Stojanović M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 2007;9:2125–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361:512–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Collins MD, Lawson PA, Willems A, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994;44:812–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu C, Finegold SM, Song Y, et al. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2008;58:1896–902.PubMedCrossRefGoogle Scholar
  23. 23.
    Rastall RA. Bacteria in the gut: friends and foes and how to alter the balance. J Nutr. 2004;134:2022S–6.PubMedGoogle Scholar
  24. 24.
    Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2008;2:1183–93.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Keefe SJ. Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol. 2008;24:51–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Mihajlovski A, Alric M, Brugère JF. A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res Microbiol. 2008;159:516–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Breitbart M, Haynes M, Kelley S, et al. Viral diversity and dynamics in an infant gut. Res Microbiol. 2008;159:367–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2010;PMID: 20686513.Google Scholar
  32. 32.
    Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Ochman H, Worobey M, Kuo CH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.PubMedCrossRefGoogle Scholar
  34. 34.
    Zoetendal EG, Akkermans ADL, de Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol. 1998;64:3854–9.PubMedGoogle Scholar
  35. 35.
    Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2010;PMID: 20571116.Google Scholar
  36. 36.
    Duncan SH, Belenguer A, Holtrop G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73:1073–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70:443–59.PubMedCrossRefGoogle Scholar
  38. 38.
    Macfarlane GT, Macfarlane S. Growth of mucin degrading bacteria in the human gut. Method Mol Biol. 2000;125:439–52.Google Scholar
  39. 39.
    Zoetendal EG, von Wright A, Vilpponen-Salmela T, et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol. 2002;68:3401–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Leitch EC, Walker AW, Duncan SH, et al. Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol. 2007;9:667–79.PubMedCrossRefGoogle Scholar
  41. 41.
    Walker AW, Duncan SH, Harmsen HJ, et al. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol. 2008;10:3275–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2010;PMID: 20847294.Google Scholar
  43. 43.
    Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr. 1987;45:1243–55.PubMedGoogle Scholar
  44. 44.
    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.PubMedGoogle Scholar
  45. 45.
    Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Pryde SE, Duncan SH, Hold GL, et al. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217:133–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Clavel T, Henderson G, Alpert CA, et al. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol. 2005;71:6077–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Stecher B, Robbiani R, Walker AW, et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007;5:2177–89.PubMedCrossRefGoogle Scholar
  49. 49.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93:97–108.PubMedCrossRefGoogle Scholar
  51. 51.
    Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008;76:3360–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8:458–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010;8:564–77.PubMedCrossRefGoogle Scholar
  54. 54.
    Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126:1620–33.PubMedCrossRefGoogle Scholar
  55. 55.
    D’Haens GR, Geboes K, Peeters M, et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998;114:262–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Swidsinski A, Weber J, Loening-Baucke V, et al. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;PMID: 21102463.Google Scholar
  58. 58.
    Scanlan PD, Shanahan F, O’Mahony C, et al. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol. 2006;44:3980–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Winter SE, Keestra AM, Tsolis RM, et al. The blessings and curses of intestinal inflammation. Cell Host Microbe. 2010;8:36–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Martinez C, Antolin M, Santos J, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol. 2008;103:643–8.PubMedCrossRefGoogle Scholar
  63. 63.
    McLaughlin SD, Walker AW, Churcher C, et al. The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing. Ann Surg. 2010;252:90–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;PMID: 20816835.Google Scholar
  65. 65.
    Feller M, Huwiler K, Stephan R, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Eckburg PB, Relman DA. The role of microbes in Crohn’s disease. Clin Infect Dis. 2007;44:256–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Barnich N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli and Crohn’s disease. Curr Opin Gastroenterol. 2007;23:16–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Tamboli CP, Neut C, Desreumaux P, et al. Dysbiosis in inflammatory bowel disease. Gut. 2004;53:1–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Gophna U, Sommerfeld K, Gophna S, et al. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol. 2006;44:4136–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Bibiloni R, Mangold M, Madsen KL, et al. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J Med Microbiol. 2006;55:1141–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Lucke K, Miehlke S, Jacobs E, et al. Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol. 2006;55:617–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2:119–29.PubMedCrossRefGoogle Scholar
  74. 74.
    Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10:735–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Sokol H, Lay C, Seksik P, et al. Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis. 2008;14:858–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.PubMedCrossRefGoogle Scholar
  79. 79.
    Mullard A. Microbiology: the inside story. Nature. 2008;453:578–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Pathogen Genomics GroupWellcome Trust Sanger InstituteCambridgeshireUK

Personalised recommendations