Enucleation, Evisceration, Secondary Orbital Implantation

Chapter

Abstract

Loss of an eye to tumor, trauma, or end stage ocular disease is a devastating condition. There is a loss of binocular vision with a reduced field of vision and loss of depth perception. Job limitations are often a result of lost binocularity, and affected individuals may experience a sense of facial disfigurement and poor self-esteem. The psychological trauma to the patient from loss of the eye may be worse than the physical disability in some instances. Few operations in ophthalmic surgery requires as much compassion on the part of the ophthalmologist as that needed to counsel a patient preparing to undergo removal of an eye. The anophthalmic surgeon must outline expected postoperative care and appearance, review potential problems, and provide emotional assistance in returning the patient to a productive life. Since eye contact is such an essential part of human interaction, it is extremely important for the artificial eye patient to maintain a natural, normal appearing prosthetic eye.

Keywords

Titanium Migration Shrinkage Cocaine Drilling 

References

  1. 1.
    Gougelmann HP. The evolution of the ocular motility implant. Int Ophthalmol Clin. 1976;10:689–711.Google Scholar
  2. 2.
    Luce CM. A short history of enucleation. Int Ophthalmol Clin. 1970;10:681–7.Google Scholar
  3. 3.
    Cutler NL. A basket type of implant for use after enucleation. Arch Ophthalmol. 1946;35:71–4.CrossRefGoogle Scholar
  4. 4.
    Grinsdale H. Notes on early case of Mules’ operation. Br J Ophthalmol. 1919;8:452–6.CrossRefGoogle Scholar
  5. 5.
    Bartisch G. Ophthalmodouleica oder Augendienst, Dresden, 1583. In: Wood CA, editor. A system of ophthalmic operations. Chicago: Cleveland Press; 1911. p. 511.Google Scholar
  6. 6.
    Kelley JJ. History of ocular prosthesis. Int Ophthalmol Clin. 1970;10:713.Google Scholar
  7. 7.
    Hirshberg J. The history of ophthalmology, volume 5. The renaissance of ophthalmology in the 18th century, (part 3). The first half of the 19th century (part 1). Bonn: JP Wayenborgh/Verlag; 1985. p. 366.Google Scholar
  8. 8.
    Rudeman Jr AD. Modified Burch type evisceration with scleral implant. Am J Ophthalmol. 1960;49:41–4.Google Scholar
  9. 9.
    Witteman GJ, Scott R. Enucleation and evisceration. In: Peyman GA, Sanders DR, Goldberg MF, editors. Principles and practice of ophthalmology. Philadelphia: WB Saunders; 1980.Google Scholar
  10. 10.
    King Jr JH, Wadsworth JAC. An atlas of ophthalmic surgery. 3rd ed. Philadelphia: JB Lippincott; 1981.Google Scholar
  11. 11.
    Mules PH. Evisceration of the globe, with artificial vitreous. Trans Ophthalmol Soc UK. 1885;5:200–6.Google Scholar
  12. 12.
    Allen TD. Guist’s bone spheres. Am J Ophthalmol. 1930;13:226–30.Google Scholar
  13. 13.
    McCoy LL. Guist bone spheres. Am J Ophthalmol. 1932;15:960–3.Google Scholar
  14. 14.
    Spaeth EB. The principles and practices of ophthalmic surgery. In: Malvern PA, editor. Lea and Feabiger; 1941. pp. 127–142.Google Scholar
  15. 15.
    Ruedemann AD. Plastic eye implants. Am J Ophthalmol. 1946;29:947–51.PubMedGoogle Scholar
  16. 16.
    Cutler NL. A universal type integrated implant. Am J Ophthalmol. 1949;32:253–8.PubMedGoogle Scholar
  17. 17.
    Allen JH, Allen L. A buried muscle cone implant: I. Development of a tunnelled hemispherical type. Arch Ophthalmol. 1950;43:879–90.CrossRefGoogle Scholar
  18. 18.
    Allen LH, Ferguson III EC, Braley AE. A quasi integrated buried muscle cone implant with good motility and advantages for prosthetic filling. Trans Am Acad Ophthalmol Otolaryngol. 1960;64:272–8.PubMedGoogle Scholar
  19. 19.
    Spivey BE, Allen LH, Burns CA. The Iowa enucleation implant: a ten year evaluation of techniques and results. Am J Ophthalmol. 1969;67:171–81.PubMedGoogle Scholar
  20. 20.
    Jordan DR, Anderson RL, Nerad JA, Allen L. A preliminary report on the universal implant. Arch Ophthalmol. 1987;105:1726–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Jordan DR, Anderson RL. The universal implant as an evisceration implant. Ophthalmic Plast Reconstr Surg. 1997;13:1–7.CrossRefGoogle Scholar
  22. 22.
    Soll DB. Expandable orbital implants. In: Turtz A, editor. Proceedings of the centennial symposium, Manhattan Eye, Ear, and Throat Hospital, Vol I: Ophthalmology. St Louis: Mosby; 1969. pp. 197–202.Google Scholar
  23. 23.
    Hornblass A, Biesman BS, Eviatar JA. Current techniques of enucleation: a survey of 5,439 intraorbital implants and a review of the literature. Ophthalmic Plast Reconstr Surg. 1995;11:77–88.CrossRefGoogle Scholar
  24. 24.
    Perry AC. Advances in enucleation. Ophthalmic Plast Reconstr Surg. 1991;4:173–82.Google Scholar
  25. 25.
    Dutton JJ. Coralline hydroxyapatite as an ocular implant. Ophthalmology. 1991;98:370–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Nunery WR, Heinz GW, Bonnin JM, et al. Exposure rate of hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthalmic Plast Reconstr Surg. 1993;9:96–104.CrossRefGoogle Scholar
  27. 27.
    Goldberg RA, Holds JB, Ebrahimpour J. Exposed hydroxyapatite orbital implants: report of six cases. Ophthalmology. 1992;99:831–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim YD, Goldberg RA, Shorr N, et al. Management of exposed hydroxyapatite orbital implants. Ophthalmology. 1994;101:1709–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Remulla HD, Rubin PAD, Shore JW, et al. Complications of porous spherical orbital implants. Ophthalmology. 1995;102:586–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Oestreicher JH, Liu E, Berkowitz M. Complications of hydroxyapatite orbital implants: a review of 100 consecutive cases and a comparison of Dexon mesh (polyglycolic acid) with scleral wrapping. Ophthalmology. 1997;104:324–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Jordan DR, Brownstein S, Jolly SS. Abscessed hydroxyapatite orbital implants: a report of two cases. Ophthalmology. 1996;103:1784–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Yoon JS, Lew H, Kim SJ, et al. Exposure rate of hydroxyapatite orbital implants. Ophthalmology. 2008;115:566–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Shoamanesh A, Pang N, Oestreicher JH. Complications of orbital implants: a review of 542 patients who have undergone orbital implantation and 275 subsequent peg placements. Orbit. 2007;25:173–82.CrossRefGoogle Scholar
  34. 34.
    Custer PL, Trinkaus KM. Porous implant exposure: incidence, management, and morbidity. Ophthalmic Plast Reconstr Surg. 2007;23:1–7.CrossRefGoogle Scholar
  35. 35.
    Jordan DR, Klapper SR, Gilberg SM. The use of vicryl mesh in 200 porous orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:53–61.CrossRefGoogle Scholar
  36. 36.
    Wang JK, Liao SL, Lai PC, et al. Prevention of exposure of porous orbital implants following enucleation. Am J Ophthalmol. 2007;143:61–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Mawn L, Jordan DR, Gilberg S. Scanning electron microscopic examination of porous orbital implants. Can J Ophthalmol. 1998;33:203–9.PubMedGoogle Scholar
  38. 38.
    Jordan DR, Munro SM, Brownstein S, et al. A synthetic hydroxyapatite implant: the so-called counterfeit implant. Ophthalmic Plast Reconstr Surg. 1998;14(4):244–9.CrossRefGoogle Scholar
  39. 39.
    Jordan DR, Bawazeer A. Experience with 120 synthetic hydroxyapatite implants (FCI3). Ophthalmic Plast Reconstr Surg. 2001;17:184–90.CrossRefGoogle Scholar
  40. 40.
    Jordan DR, Pelletier C, Gilberg S, et al. A new variety of hydroxyapatite: the Chinese implant. Ophthalmic Plast Reconstr Surg. 1999;15:420–4.CrossRefGoogle Scholar
  41. 41.
    Jordan DR, Hwang I, McEachren TM, et al. Brazilian hydroxyapatite implant. Ophthalmic Plast Reconstr Surg. 2000;16:363–9.CrossRefGoogle Scholar
  42. 42.
    Jordan DR, Brownstein S, Gilberg S, et al. Investigation of a bioresorbable orbital implant. Ophthalmic Plast Reconstr Surg. 2002;18:342–8.CrossRefGoogle Scholar
  43. 43.
    Klett A, Guthoff R. Muscle pedunculated scleral flaps. A microsurgical modification to improve prosthesis motility. Ophthalmologe. 2003;100:449–52.PubMedGoogle Scholar
  44. 44.
    Blaydon SM, Shepler TR, Neuhaus RW, et al. The porous polyethylene (Medpor) spherical orbital implant: a retrospective study of 136 cases. Ophthalmic Plast Reconstr Surg. 2003;19:364–71.CrossRefGoogle Scholar
  45. 45.
    Karesh JW, Dresner SC. High-density porous polyethylene (Medpor) as a successful anophthalmic socket implant. Ophthalmology. 1994;101:1688–95.CrossRefPubMedGoogle Scholar
  46. 46.
    Rubin PA, Popham J, Rumelt S, et al. Enhancement of the cosmetic and functional outcome of enucleation with the conical orbital implant. Ophthalmology. 1998;105:919–25.CrossRefPubMedGoogle Scholar
  47. 47.
    Anderson RL, Yen MT, Lucci LM, et al. The quasi-integrated porous polyethylene orbital implant. Ophthalmic Plast Reconstr Surg. 2002;18:50–5.CrossRefGoogle Scholar
  48. 48.
    Naik MN, Murthy RK, Honavar SG. Comparison of vascularization of Medpor and Medpor-Plus orbital implants: a prospective, randomized study. Ophthalmic Plast Reconstr Surg. 2007;23:463–7.CrossRefGoogle Scholar
  49. 49.
    Mawn LA, Jordan DR, Gilberg S. Proliferation of human fibroblasts in vitro after exposure to orbital implants. Can J Ophthalmol. 2001;36:245–51.PubMedGoogle Scholar
  50. 50.
    Marx DP, Vagefi MR, Bearden WH, et al. The quasi-integrated porous polyethylene implant in pediatric patients enucleated for retinoblastoma. Orbit. 2008;27:403–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Chuo JY, Dolman PJ, Ng TL, et al. Clinical and histopathologic review of 18 explanted porous polyethylene orbital implants. Ophthalmology. 2009;116:349–54.CrossRefPubMedGoogle Scholar
  52. 52.
    Alwitry A, West S, King J, et al. Long-term follow-up of porous polyethylene spherical implants after enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2007;23:11–5.CrossRefGoogle Scholar
  53. 53.
    Christel P. Biocompatibility of alumina. Clin Orthop. 1992;282:10–8.PubMedGoogle Scholar
  54. 54.
    Cook S, Dalton J. Biocompatibility and biofunctionality of implanted materials. Alpha Omegan. 1992;85:41–7.PubMedGoogle Scholar
  55. 55.
    Jordan DR, Mawn L, Brownstein S, et al. The bioceramic orbital implant: a new generation of porous implants. Ophthalmic Plast Reconstr Surg. 2000;16:347–55.CrossRefGoogle Scholar
  56. 56.
    Jordan DR, Gilberg S, Mawn LA. The bioceramic orbital implant: experience with 107 implants. Ophthalmic Plast Reconstr Surg. 2003;19:128–35.CrossRefGoogle Scholar
  57. 57.
    Jordan DR, Gilberg S, Bawazeer A. Coralline hydroxyapatite orbital implant (bio-eye): experience with 158 patients. Ophthalmic Plast Reconstr Surg. 2004;20:69–74.CrossRefGoogle Scholar
  58. 58.
    Wang JK, Lai PC, Liao SL. Late exposure of the bioceramic orbital implant. Am J Ophthalmol. 2009;147:162–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Su GW, Yen MT. Current trends in managing the anophthalmic socket after primary enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2004;20:274–80.CrossRefGoogle Scholar
  60. 60.
    Jordan DR, Anderson RL, Nerad JA, et al. A preliminary report on the universal implant. Arch Ophthalmol. 1987;105:1726–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Guillinta P, Vasani SN, Granet DB, et al. Prosthetic motility in pegged versus unpegged integrated porous orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:119–22.CrossRefGoogle Scholar
  62. 62.
    Custer PL, Kennedy RH, Woog JJ, et al. Orbital implants in enucleation surgery: a report by the American Academy of Ophthalmology. Ophthalmology. 2003;110:2054–61.CrossRefPubMedGoogle Scholar
  63. 63.
    Custer PL, Trinkaus KM, Fornoff J. Comparative motility of hydroxyapatite and alloplastic enucleation implants. Ophthalmology. 1999;106:513–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Colen TP, Paridaens DA, Lemij HG, et al. Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. Ophthalmology. 2000;07:1889–94.CrossRefGoogle Scholar
  65. 65.
    Perry JD, Tam RC. Safety of unwrapped spherical orbital implants. Ophthalmic Plast Reconstr Surg. 2004;20:281–4.CrossRefGoogle Scholar
  66. 66.
    Trichopoulos N, Augsburger JJ. Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Ophthalmic Plast Reconstr Surg. 2005;1:331–6.CrossRefGoogle Scholar
  67. 67.
    Gundlach KKH, Gutoff RF, Hingst VHM, et al. Expansion of the socket and orbit for congenital clinical anophthalmia. Plast Reconstr Surg. 2005;116:1214–22.CrossRefPubMedGoogle Scholar
  68. 68.
    Dunaway DJ, David DJ. Intraorbital tissue expansion in the management of congenital anophthalmos. Br J Plast Surg. 1996;49:529–33.CrossRefPubMedGoogle Scholar
  69. 69.
    Sinclair D, Dangerfiled P. Nervous system. In: Sinclair D, Dangerfield P, editors. Human growth after birth. Oxford: Oxford University Press; 1998. p. 87.Google Scholar
  70. 70.
    Bentley RP, Sgouros S, Natarajan K, et al. Normal changes in orbital volume during childhood. J Neurosurg. 2002;96:742–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Yago K, Furuta M. Orbital growth after unilateral enucleation in infancy without an orbital implant. Jpn J Ophthalmol. 2001;45:648–52.CrossRefPubMedGoogle Scholar
  72. 72.
    Furuta M. Measurement of orbital volume by computed tomography: especially on the growth of the orbit. Jpn J Ophthalmol. 2000;104:724–8.Google Scholar
  73. 73.
    Farkas LG, Posnick JC, Hrecko TM. Growth patterns in the orbital region: a morphometric study. Cleft Palate Craniofac J. 1992;29:315–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Apt L, Isenberg S. Changes in orbital dimensions following enucleation. Arch Ophthalmol. 1973;90:393–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Kennedy RE. The effect of early enucleation on the orbit in animals and humans. Trans Am Ophthalmol Soc. 1964;62:459–510.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Pfieffer RL. The effect of enucleation on the orbit. Trans Am Acad Ophthalmol. 1945;49:236–9.Google Scholar
  77. 77.
    Taylor W. Effect of enucleation of one eye in childhood upon subsequent development of the face. Trans Ophthalmol Soc UK. 1939;59:368–73.Google Scholar
  78. 78.
    Hintschich C, Zonneveld F, Baldeschi L, et al. Bony orbital development after early enucleation in humans. Br J Ophthalmol. 2001;85:205–8.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Howard GM, Kinder RS, MacMillan Jr AS. Orbital growth after uniltateral enucleation in childhood. Arch Ophthalmol. 1965;73:80–3.CrossRefPubMedGoogle Scholar
  80. 80.
    Imhof SM, Mourits MP, Hofman P, et al. Quantification of orbital and mid-facial growth retardation after megavoltage external beam irradiation in children with retinoblastoma. Ophthalmology. 1996;103:263–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Cepela MA, Nunery WR, Martin RT. Stimulation of orbital growth by the use of expandable implants in the anophthalmic cat orbit. Ophthalmic Plast Reconstr Surg. 1992;8:157–67.CrossRefGoogle Scholar
  82. 82.
    Kaste SC, Chen G, Fontanesi J, et al. Orbital development in long-term survivors of retinoblastoma. J Clin Oncol. 1997;15:1183–9.PubMedGoogle Scholar
  83. 83.
    Fountain TR, Goldberger S, Murphree AL. Orbital development after enucleation in early childhood. Ophthalmic Plast Reconstr Surg. 1999;15:32–6.CrossRefGoogle Scholar
  84. 84.
    Heher KL, Katowitz JA, Low JE. Unilateral dermis-fat graft implantation in the pediatric orbit. Ophthalmic Plast Reconstr Surg. 1998;14:81–8.CrossRefGoogle Scholar
  85. 85.
    Mitchell KT, Hollsten DA, White WL, et al. The autogenous dermis-fat orbital implant in children. J AAPOS. 2001;5:367–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Nunery WR, Hetzler KJ. Dermal-fat graft as a primary enucleation technique. Ophthalmology. 1985;92:1256–61.CrossRefPubMedGoogle Scholar
  87. 87.
    Migliori ME, Putterman AM. The domed dermis-fat graft orbital implant. Ophthalmic Plast Reconstr Surg. 1991;7:23–30.CrossRefGoogle Scholar
  88. 88.
    DePotter P, Shields CL, Shields JA, et al. Use of the hydroxyapatite ocular implant in the pediatric population. Arch Ophthalmol. 1994;112:208–12.CrossRefGoogle Scholar
  89. 89.
    Iordanidou V, De PP. Porous polyethylene orbital implant in the pediatric population. Am J Ophthalmol. 2004;138:425–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang JK, Liao SL, Lin LL, et al. Porous orbital implants, wraps, and PEG placement in the pediatric population after enucleation. Am J Ophthalmol. 2007;144:109–16.CrossRefPubMedGoogle Scholar
  91. 91.
    DePotter P, Shields CL, Shields JA, et al. Role of magnetic resonance imaging in the evaluation of the hydroxyapatite orbital implant. Ophthalmology. 1992;99:824–30.CrossRefGoogle Scholar
  92. 92.
    Arora V, Weeks K, Halperin EC, et al. Influence of coralline hydroxyapatite used as an ocular implant on the dose distribution of external beam photon radiation therapy. Ophthalmology. 1992;99:380–2.CrossRefPubMedGoogle Scholar
  93. 93.
    Kaltreider SA. The ideal ocular prosthesis: analysis of prosthetic volume. Ophthalmic Plast Reconstr Surg. 2000;16:388–92.CrossRefGoogle Scholar
  94. 94.
    Kaltreider SA, Lucarelli MJ. A simple algorithm for selection of implant size for enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2002;18:336–41.CrossRefGoogle Scholar
  95. 95.
    Custer PL, Trinkaus KM. Volumetric determination of enucleation implant size. Am J Ophthalmol. 1999;128:489–49492.CrossRefPubMedGoogle Scholar
  96. 96.
    Thaller VT. Enucleation volume measurement. Ophthalmic Plast Reconstr Surg. 1997;13:18–20.CrossRefGoogle Scholar
  97. 97.
    Kaltreider SA, Jacobs JL, Hughes MO. Predicting the ideal implant size before enucleation. Ophthalmic Plast Reconstr Surg. 1999;15:37–43.CrossRefGoogle Scholar
  98. 98.
    Perry JD. Hydroxyapatite implants (letter). Ophthalmology. 2003;110:1281–3.CrossRefPubMedGoogle Scholar
  99. 99.
    Long JA, Tann III TM, Bearden III WH, et al. Enucleation: is wrapping the implant necessary for optimal motility? Ophthalmic Plast Reconstr Surg. 2003;19:194–7.CrossRefGoogle Scholar
  100. 100.
    Suter AJ, Molteno AC, Bevin TH, et al. Long term follow up of bone derived hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:1287–92.PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Li T, Shen J, Duffy MT. Exposure rates of wrapped and unwrapped orbital implants following enucleation. Ophthalmic Plast Reconstr Surg. 2001;17:431–5.CrossRefGoogle Scholar
  102. 102.
    Jordan DR, Klapper SR. Wrapping hydroxyapatite implants. Ophthalmic Surg Lasers. 1999;30:403–7.PubMedGoogle Scholar
  103. 103.
    Jordan DR. Localization of extraocular muscles during secondary orbital implantation surgery: the tunnel technique: experience in 100 patients. Ophthalmology. 2004;111:1048–54.CrossRefPubMedGoogle Scholar
  104. 104.
    Nunery WR. Risk of prion transmission with the use of xenografts and allografts in surgery. Ophthalmic Plast Reconstr Surg. 2003;17:389–94.CrossRefGoogle Scholar
  105. 105.
    Seiff SR, Chang Jr JS, Hurt MH, et al. Polymerase chain reaction identification of human immunodeficiency virus-1 in preserved human sclera. Am J Ophthalmol. 1994;118:528–9.PubMedGoogle Scholar
  106. 106.
    Lang CJ, Heckmann JG, Neundorfer B. Creutzfeldt-Jakob disease via dural and corneal transplants. J Neurol Sci. 1998;160:128–39.CrossRefPubMedGoogle Scholar
  107. 107.
    Brooke FJ, Boyd A, Klug GM, et al. Lyodura use and the risk of iatrogenic Creutzfeldt-Jakob disease in Australia. Med J Aust. 2004;180:177–81.PubMedGoogle Scholar
  108. 108.
    Hogan RN, Brown P, Heck E, et al. Risk of prion disease transmission from ocular donor tissue transplantation. Cornea. 1999;18:2–11.CrossRefPubMedGoogle Scholar
  109. 109.
    Heckmann JG, Lang CJ, Petruch F, et al. Transmission of Creutzfeldt-Jakob disease via a corneal transplant. J Neurol Neurosurg Psychiatry. 1997;63:388–90.PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Simonds RJ, Holmberg SD, Hurwitz RL, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med. 1992;326:726–32.CrossRefPubMedGoogle Scholar
  111. 111.
    Arat YO, Shetlar DJ, Boniuk M. Bovine pericardium versus homologous sclera as a wrapping for hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:189–93.CrossRefGoogle Scholar
  112. 112.
    Gayre GS, DeBacker CM, Lipham W, et al. Bovine pericardium as a wrapping for orbital implants. Ophthalmic Plast Reconstr Surg. 2001;17:381–7.CrossRefGoogle Scholar
  113. 113.
    Pelletier CR, Jordan DR, Gilberg SM. Use of temporalis fascia for exposed hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 1998;14:198–203.CrossRefGoogle Scholar
  114. 114.
    Naugle Jr TC, Fry CL, Sabatier RE, et al. High leg incision fascia lata harvesting. Ophthalmology. 1997;104:1480–8.CrossRefPubMedGoogle Scholar
  115. 115.
    Kao SCS, Chen S. The use of rectus abdominis sheath for wrapping of the hydroxyapatite orbital implants. Ophthalmic Surg Lasers. 1999;30:69–71.PubMedGoogle Scholar
  116. 116.
    Naugle Jr TC, Lee AM, Haik BG, et al. Wrapping hydroxyapatite orbital implants with posterior auricular muscle complex grafts. Am J Ophthalmol. 1999;128:495–501.CrossRefPubMedGoogle Scholar
  117. 117.
    Karesh JW. Polytetrafluoroethylene as a graft material in ophthalmic plastic and reconstructive surgery: an experimental and clinical study. Ophthalmic Plast Reconstr Surg. 1987;3:179–85.CrossRefGoogle Scholar
  118. 118.
    Choo PH, Carter SR, Crawford JB, et al. Exposure of expanded polytetrafluoroethylene-wrapped hydroxyapatite orbital implant: a report of two patients. Ophthalmic Plast Reconstr Surg. 1999;15:77–8.CrossRefGoogle Scholar
  119. 119.
    Kao L. Polytetrafluoroethylene as a wrapping material for a hydroxyapatite orbital implant. Ophthalmic Plast Reconstr Surg. 2000;16:286–8.CrossRefGoogle Scholar
  120. 120.
    Heimann H, Bechrakis NE, Zepeda LC, et al. Exposure of orbital implants wrapped with polyester-urethane after enucleation for advanced retinoblastoma. Ophthalmic Plast Reconstr Surg. 2005;21:123–8.CrossRefGoogle Scholar
  121. 121.
    Klapper SR, Jordan DR, Punja K, et al. Hydroxyapatite implant wrapping materials: analysis of fibrovascular ingrowth in an animal model. Ophthalmic Plast Reconstr Surg. 2000;16:278–85.CrossRefGoogle Scholar
  122. 122.
    Jordan DR, Allen LH, Ells A, et al. The use of vicryl mesh (polyglactin 910) for implantation of hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 1995;11:95–9.CrossRefGoogle Scholar
  123. 123.
    Jordan DR, Ells A, Brownstein S, et al. Vicryl-mesh wrap for the implantation of hydroxyapatite orbital implants: an animal model. Can J Ophthalmol. 1995;30:241–6.PubMedGoogle Scholar
  124. 124.
    Gayre GS, Lipham W, Dutton JJ. A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model. Ophthalmic Plast Reconstr Surg. 2002;18:275–80.CrossRefGoogle Scholar
  125. 125.
    Custer PL. Enucleation: past, present, and future. Ophthalmic Plast Reconstr Surg. 2000;16:316–21.CrossRefGoogle Scholar
  126. 126.
    Custer PL. Reply to Dr. D.R. Jordan’s letter on polyglactin mesh wrapping of hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 2001;17:222–3.CrossRefGoogle Scholar
  127. 127.
    Inkster CF, Ng SG, Leatherbarrow B. Primary banked sclera patch graft in the prevention of exposure of hydroxyapatite orbital implants. Ophthalmology. 2002;109:389–92.Google Scholar
  128. 128.
    Jordan DR, Chan S, Mawn L, et al. Complications associated with pegging hydroxyapatite orbital implants. Ophthalmology. 1999;106:505–12.CrossRefPubMedGoogle Scholar
  129. 129.
    Edelstein C, Shields CL, DePotter P, et al. Complications of motility peg placement for the hydroxyapatite orbital implant. Ophthalmology. 1997;104:1616–21.CrossRefPubMedGoogle Scholar
  130. 130.
    Lin CJ, Liao SL, Jou JR, et al. Complications of motility peg placement for porous hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:394–6.PubMedCentralCrossRefPubMedGoogle Scholar
  131. 131.
    Jordan DR. Spontaneous loosening of hydroxyapatite peg sleeves. Ophthalmology. 2001;108:2041–4.CrossRefPubMedGoogle Scholar
  132. 132.
    Cheng MS, Liao SL, Lin LL. Late porous polyethylene implant exposure after motility coupling post placement. Am J Ophthalmol. 2004;138:420–4.CrossRefPubMedGoogle Scholar
  133. 133.
    Lee SY, Jang JW, Lew H, et al. Complications in motility PEG placement for hydroxyapatite orbital implant in anophthalmic socket. Jpn J Ophthalmol. 2002;46:103–7.CrossRefPubMedGoogle Scholar
  134. 134.
    Fahim DK, Frueh BR, Musch DC, et al. Complications of pegged and non-pegged hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2007;23:206–10.CrossRefGoogle Scholar
  135. 135.
    Yazici B, Akova B, Sanli O. Complications of primary placement of motility post in porous polyethylene implants during enucleation. Am J Ophthalmol. 2007;143:828–34.CrossRefPubMedGoogle Scholar
  136. 136.
    Jordan DR, Klapper SR. A new titanium peg system for hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2000;16:380–7.CrossRefGoogle Scholar
  137. 137.
    Ainbinder DJ, Haik BG, Tellado M. Hydroxyapatite orbital implant abscess: histopathologic correlation of an infected implant following evisceration. Ophthalmic Plast Reconstr Surg. 1994;10:267–70.CrossRefGoogle Scholar
  138. 138.
    Klapper SR, Jordan DR, Ells A, et al. Hydroxyapatite orbital implant vascularization assessed by magnetic resonance imaging. Ophthalmic Plast Reconstr Surg. 2003;19:46–52.CrossRefGoogle Scholar
  139. 139.
    Choi JC, Iwamoto MA, Bstandig S, et al. Medpor motility coupling post: a rabbit model. Ophthalmic Plast Reconstr Surg. 1999;15:190–201.CrossRefGoogle Scholar
  140. 140.
    Rubin PAD, Fay AM, Remulla HD. Primary placement of motility coupling post in porous polyethylene orbital implants. Arch Ophthalmol. 1999;118:826–32.CrossRefGoogle Scholar
  141. 141.
    Hsu WC, Green JP, Spilker MH, et al. Primary placement of a titanium motility post in a porous polyethylene orbital implant. Ophthalmic Plast Reconstr Surg. 2003;16:370–9.CrossRefGoogle Scholar
  142. 142.
    Liao SL, Chen MS, Lin LL. Primary placement of a titanium sleeve in hydroxyapatite orbital implants. Eye. 2005;19:400–5.CrossRefPubMedGoogle Scholar
  143. 143.
    Liao SL, Shih MJ, Lin LL. Primary placement of a hydroxyapatite-coated sleeve in bioceramic orbital implants. Am J Ophthalmol. 2005;139:235–41.CrossRefPubMedGoogle Scholar
  144. 144.
    Jordan DR, Brownstein S, Faraji H. Clinicopathologic analysis of 15 explanted hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 2004;20:285–90.CrossRefGoogle Scholar
  145. 145.
    Jordan DR, Klapper SR, Mawn L, et al. Abscess formation within a synthetic hydroxyapatite orbital implant. Can J Ophthalmol. 1998;33:329–33.PubMedGoogle Scholar
  146. 146.
    Klapper SR, Jordan DR, Brownstein S, et al. Incomplete fibrovascularization of a hydroxyapatite orbital implant 3 months after implantation. Arch Ophthalmol. 1999;106:1640–1.CrossRefGoogle Scholar
  147. 147.
    Miller DM, Murray T, Suarez F, et al. Motility assessment and clinical outcomes of a magnetically integrated microporous implant. Ophthalmic Surg Lasers Imaging. 2007;38:339–41.PubMedGoogle Scholar
  148. 148.
    Nakara T, Ben Simon GY, Douglas RS. Comparing outcomes of enucleation and evisceration. Ophthalmology. 2006;113:2270–5.CrossRefGoogle Scholar
  149. 149.
    Timothy NH, Freilich DE, Linberg JV. Evisceration versus enucleation from the ocularists’s perspective. Ophthalmic Plast Reconstr Surg. 2003;19:417–20.CrossRefGoogle Scholar
  150. 150.
    Georgescu D, Reza Vagefi M, Lin Yang CC, McCann J, Anderson RL. Evisceration with equatorial sclerotomy for phthisis bulbi ann microphthalmos. Ophthalmic Plast Reconstr Surg. 2010;26:165–7.CrossRefGoogle Scholar
  151. 151.
    Jordan DJ, Parisi J. The scleral filet technique. Can J Ophthalmol. 1996;31(7):357–61.Google Scholar
  152. 152.
    Soll DB. Evisceration with eversion of the scleral shell and muscle cone positioning of the implant. Am J Ophthalmol. 1987;104:265–9.PubMedGoogle Scholar
  153. 153.
    Kostick DA, Linberg JV. Evisceration with hydroxyapatite implant. Surgical technique and review of 31 case reports. Ophthalmology. 1995;102:1542–9.CrossRefPubMedGoogle Scholar
  154. 154.
    Jordan DR, Anderson RL. The universal implant for evisceration surgery. Ophthalmic Plast Reconstr Surg. 1997;13:1–7.CrossRefGoogle Scholar
  155. 155.
    Long JA, Tann III TM, Girgin CA. Evisceration: a new technique of trans scleral implant placement. Ophthalmic Plast Reconstr Surg. 2000;5(3):322–5.CrossRefGoogle Scholar
  156. 156.
    Massry GG, Holds JB. Evisceration with scleral modification. Ophthalmol Plast Reconstr Surg. 2001;17:42–7.CrossRefGoogle Scholar
  157. 157.
    Ozgur OR, Akcay L, Dogan OK. Evisceration via superior temporal sclerotomy. Am J Ophthalmol. 2005;139:78–86.CrossRefPubMedGoogle Scholar
  158. 158.
    Hart RH, Barnes E, Dickinson AJ. Secondary orbital implants after evisceration: a new conjunctiva-sparing technique. Ophthalmol Plast Reconstr Surg. 2005;21:129–32.CrossRefGoogle Scholar
  159. 159.
    Sales-Sanz M, Sanz-Lopez A. Four-petal evisceration: a new technique. Ophthalmol Plast Reconstr Surg. 2007;23:389–92.CrossRefGoogle Scholar
  160. 160.
    Masidottir S, Sahlin S. Patient satisfaction and results after evisceration with a split-sclera technique. Orbit. 2007;26:389–92.Google Scholar
  161. 161.
    Maumanee AE. Retrobulbar alcohol injection: relief of ocular pain in eyes with and without vision. Am J Ophthamol. 1949;32:1502–8.Google Scholar
  162. 162.
    Al-Faran MF, Al-Omar O. Retrobulbar alcohol injection in blind painful eyes. Ann Ophthalmol. 1990;22:460–2.PubMedGoogle Scholar
  163. 163.
    Olurin O, Osuntokun O. Complications of retrobulbar alcohol injections. Ann Ophthalmol. 1978;10:474–6.PubMedGoogle Scholar
  164. 164.
    Chen TC, Ahn Yuen SJ, Sangaalang MA, Fernando RE, Luenberger EU. Retrobulbar chlorpromazine injections for management of blind and seeing eyes. J Glaucoma. 2002;11:209–13.CrossRefPubMedGoogle Scholar
  165. 165.
    Estafanous MFG, Kaiser PK, Baerveldt G. Retrobulbar chlorpromazine in blind and seeing eyes. Retina. 2000;20:555–8.CrossRefPubMedGoogle Scholar
  166. 166.
    McCulley TJ, Kersten RC. Periocular inflammation after retrobulbar chlorpromazine (Thorazine) injection. Ophthalmic Plast Reconstr Surg. 2006;4:283–5.CrossRefGoogle Scholar
  167. 167.
    Cotliar JM, Shields CL, Meyer DR. Chronic orbital inflammation and fibrosis after retrobulbar alcohol and chlorpromazine injections in a patient with choroidal melanoma. Ophthalmic Plast Reconstr Surg. 2008;24:410–1.CrossRefGoogle Scholar
  168. 168.
    Burroughs JR, Soparkar CN, Patrinely JR, Kersten RC, Kulwin DR, Lowe CL. Monitored anesthesia care for enucleations and eviscerations. Ophthalmology. 2003;110(2):311–3.CrossRefPubMedGoogle Scholar
  169. 169.
    Archer KF, Hurwitz JJ. Dermis-fat grafts and evisceration. Ophthalmology. 1989;96:170–4.CrossRefPubMedGoogle Scholar
  170. 170.
    Borodic GE, Townsend DJ, Beyer-Machule CK. Dermis fat graft in eviscerated sockets. Ophthalmic Plast Reconstr Surg. 1989;5:144–9.CrossRefGoogle Scholar
  171. 171.
    Lisman RD, Smith BC. Dermis-fat grafting. In: Smith BC, editor. Ophthalmic plastic and reconstructive surgery. St Louis: CV Mosby; 1987. p. 1308–20.Google Scholar
  172. 172.
    Saunders CK, Garber PF, Della Rocca RC. Socket reconstruction. In: Levine MR, editor. Manual of oculoplastic surgery. Philadelphia: Butterworth Heinemann; 2003. p. 314–6.Google Scholar
  173. 173.
    Spivey BE et al. The Iowa enucleation implant: a 10 year evolution of technique and results. Am J Opthalmol. 1969;67:171–7.Google Scholar
  174. 174.
    Anderson RL, Thiese SM, Nerad JA, et al. The universal orbital implant: indications and methods. Adv Ophthalmic Plast Reconstr Surg. 1990;8:88–99.PubMedGoogle Scholar
  175. 175.
    Levine MR, Pou CR, Lesh RH. The 1998 Wendell Hughes lecture. Evisceration: is sympathetic ophthalmia a concern in the new millenium? Ophthalmic Plast Reconstr Surg. 1999;15:4–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Ottawa Eye InstituteOttawaCanada
  2. 2.Klapper Eyelid and Facial Plastic SurgeryCarmelUSA

Personalised recommendations