Skip to main content

Adipocyte Differentiation

  • Chapter
  • First Online:
Adipose Tissue Biology

Abstract

Adipocyte differentiation is a highly controlled process that has been extensively studied for the last 25 years. Two different kinds of in vitro experimental models, essential in determining the mechanisms involved in adipocyte proliferation, differentiation and adipokine secretion, are currently available: preadipocyte cell lines, already committed to the adipocyte lineage, and multipotent stem cell lines, able to commit to different lineages including adipose, bone and muscle lineage. Many different events contribute to the commitment of a mesenchymal stem cell into the adipocyte lineage, including the coordination of a complex network of transcription factors, cofactors and signalling intermediates from numerous pathways. New fat cells constantly arise from a preexisting population of undifferentiated progenitor cells or through the dedifferentiation of adipocytes to preadipocytes, which then proliferate and redifferentiate into mature adipocytes. Analysis of adipocyte turnover has shown that adipocytes are a dynamic and highly regulated population of cells. Adipogenesis is a multi-step process involving a cascade of transcription factors and cell-cycle proteins regulating gene expression and leading to adipocyte development. Several positive and negative regulators of this network have been elucidated in recent years. This review is focused in the main molecular and cellular processes associated with adipocyte differentiation, including transcriptional factors and cofactors and extranuclear modulators. The role of epigenetic factors, microRNAs and chronobiology in adipogenesis is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abella A, Dubus P, Malumbres M et al (2005) Cdk4 promotes adipogenesis through PPARγ activation. Cell Metab 2:239–249

    PubMed  CAS  Google Scholar 

  • Alexandre KB, Smit AM, Gray IP et al (2008) Metformin inhibits intracellular lipid accumulation in the murine pre-adipocyte cell line, 3T3-L1. Diabetes Obes Metab 10:688–690

    PubMed  CAS  Google Scholar 

  • Aouadi M, Laurent K, Prot M et al (2006) Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes 55:281–289

    PubMed  CAS  Google Scholar 

  • Bastard JP, Caron M, Vidal H et al (2002) Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 359:1026–1031

    PubMed  CAS  Google Scholar 

  • Bluher M, Michael MD, Peroni OD et al (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3:25–38

    PubMed  CAS  Google Scholar 

  • Bost F, Aouadi M, Caron L et al (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87:51–56

    PubMed  CAS  Google Scholar 

  • Caprio M, Feve B, Claes A et al (2007) Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J 21:2185–2194

    PubMed  CAS  Google Scholar 

  • Choy L, Derynck R (2003) Transforming growth factor-β inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 278:9609–9619

    PubMed  CAS  Google Scholar 

  • Clouthier DE, Comerford SA, Hammer RE (1997) Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-β1 transgenic mice. J Clin Invest 100:2697–2713

    PubMed  CAS  Google Scholar 

  • Constant VA, Gagnon A, Landry A et al (2006) Macrophage conditioned medium inhibits the differentiation of 3T3-L1 and human abdominal preadipocytes. Diabetologia 49:1402–1411

    PubMed  CAS  Google Scholar 

  • Cornelius P, MacDougald OA, Lane MD (1994) Regulation of adipocyte development. Annu Rev Nutr 14:99–129

    PubMed  CAS  Google Scholar 

  • D’Alessio AC, Weaver IC, Szyf M (2007) Acetylationinduced transcription is required for active DNA demethylation in methylation-silenced genes. Mol Cell Biol 27(21):7462–7474

    PubMed  Google Scholar 

  • Djian P, Roncari AK, Hollenberg CH (1983) Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest 72:1200–1208

    PubMed  CAS  Google Scholar 

  • Dowell P, Flexner C, Kwiterovich PO et al (2000) Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J Biol Chem 275:41325–41332

    PubMed  CAS  Google Scholar 

  • Fajas L, Egler V, Reiter R et al (2002a) The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev Cell 3:903–910

    PubMed  CAS  Google Scholar 

  • Fajas L, Landsberg RL, Huss-Garcia Y (2002b) E2Fs regulate adipocyte differentiation. Dev Cell 3:39–49

    PubMed  CAS  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    PubMed  CAS  Google Scholar 

  • Fischer M, Timper K, Radimerski T et al (2010) Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots. Diabetes Obes Metab 12:356–359

    PubMed  CAS  Google Scholar 

  • Floyd ZE, Stephens JM (2003) STAT5A promotes adipogenesis in nonprecursor cells and associates with the glucocorticoid receptor during adipocyte differentiation. Diabetes 52:308–314

    PubMed  CAS  Google Scholar 

  • Freytag SO, Paielli DL, Gilbert JD (1994) Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8:1654–1663

    PubMed  CAS  Google Scholar 

  • Fu M, Rao M, Bouras T et al (2005) Cyclin D1 inhibits peroxisome proliferator-activated receptor γ-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280:16934–16941

    PubMed  CAS  Google Scholar 

  • Garofalo RS, Orena SJ, Rafidi K et al (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ. J Clin Invest 112:197–208

    PubMed  CAS  Google Scholar 

  • Ge K, Guermah M, Yuan CX et al (2002) Transcription coactivator TRAP220 is required for PPARγ2-stimulated adipogenesis. Nature 417:563–567

    PubMed  CAS  Google Scholar 

  • Gerin I, Bommer GT, McCoin CS et al (2010) Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 299(2):E198–E206

    PubMed  CAS  Google Scholar 

  • Gómez-Abellan P, Gómez-Santos C, Madrid JA et al (2010) Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 151:115–122

    PubMed  Google Scholar 

  • Gómez-Santos C, Gómez-Abellán P, Madrid JA et al (2009) Circadian rhythm of clock genes in human adipose explants. Obesity 17:1481–1485

    PubMed  Google Scholar 

  • Gray S, Feinberg MW, Hull S et al (2002) The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem 277:34322–34328

    PubMed  CAS  Google Scholar 

  • Green H, Kehinde O (1976) Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7:105–113

    PubMed  CAS  Google Scholar 

  • Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133

    PubMed  CAS  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    PubMed  CAS  Google Scholar 

  • Guermah M, Ge K, Chiang CM et al (2003) The TBN protein, which is essential for early embryonic mouse development, is an inducible TAFII implicated in adipogenesis. Mol Cell 12:991–1001

    PubMed  CAS  Google Scholar 

  • Hernández-Morante JJ, Gomez-Santos C, Milagro F et al (2009) Expression of cortisol metabolism related genes shows circadian rhythmic patterns in human adipose tissue. Int J Obes 33:473–480

    Google Scholar 

  • Hirsch J, Batchelor B (1976) Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 5:299–311

    PubMed  CAS  Google Scholar 

  • Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078

    PubMed  CAS  Google Scholar 

  • Horii T, Morita S, Kimura M (2009) Epigenetic regulation of adipocyte differentiation by a Rho guanine nucleotide exchange factor, WGEF. PLoS One 4(6):e5809

    PubMed  Google Scholar 

  • Huang HJ, Donald JT (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    PubMed  CAS  Google Scholar 

  • Hutley L, Shurety W, Newell F et al (2004) Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes 53:3097–3106

    PubMed  CAS  Google Scholar 

  • Huypens P, Quartier E, Pipeleers D et al (2005) Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur J Pharmacol 518:90–95

    PubMed  CAS  Google Scholar 

  • Joyner JM, Hutley LJ, Cameron DP (2000) Glucocorticoid receptors in human preadipocytes: regional and gender differences. J Endocrinol 166:145–152

    PubMed  CAS  Google Scholar 

  • Kajimura S, Seale P, Tomaru T et al (2008) Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 22:1397–1409

    PubMed  CAS  Google Scholar 

  • Kanazawa A, Kawamura Y, Sekine A et al (2005a) Single nucleotide polymorphisms in the gene encoding Kruppel-like factor 7 are associated with type 2 diabetes. Diabetologia 48:1315–1322

    PubMed  CAS  Google Scholar 

  • Kanazawa A, Tsukada S, Kamiyama M et al (2005b) Wnt5b partially inhibits canonical Wnt/β-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 330:505–510

    PubMed  CAS  Google Scholar 

  • Kannisto K, Sutinen J, Korsheninnikova E et al (2003) Expression of adipogenic transcription factors, peroxisome proliferator-activated receptor-gamma coactivator-1, IL-6 and CD45 in subcutaneous adipose tissue in lipodystrophy associated with highly active antiretroviral therapy. AIDS 17:1753–1762

    PubMed  CAS  Google Scholar 

  • Kawai M, Green CB, Lecka-Czernik B et al (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci USA 107(23):10508–10513

    PubMed  CAS  Google Scholar 

  • Kim JE, Chen J (2004) Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53:2748–2756

    PubMed  CAS  Google Scholar 

  • Kim JB, Spiegelman BM (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10:1096–1107

    PubMed  CAS  Google Scholar 

  • Kim JB, Sarraf P, Wright M et al (1998a) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 101:1–9

    PubMed  CAS  Google Scholar 

  • Kim JB, Wright HM, Wright M et al (1998b) ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc Natl Acad Sci USA 95:4333–4337

    PubMed  CAS  Google Scholar 

  • Klemm DJ, Leitner JW, Watson P et al (2001) Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J Biol Chem 276:28430–28435

    PubMed  CAS  Google Scholar 

  • Klöting N, Berthold S, Kovacs P et al (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4(3):e4699

    PubMed  Google Scholar 

  • Konieczny SF, Emerson CP Jr (1984) 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell 38:791–800

    PubMed  CAS  Google Scholar 

  • Kuri-Harcuch W, Marsch-Moreno M (1983) DNA synthesis and cell division related to adipose differentiation of 3T3 cells. J Cell Physiol 114:39–44

    PubMed  CAS  Google Scholar 

  • Lee K, Villena JA, Moon YS et al (2003) Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1. J Clin Invest 111:453–461

    PubMed  CAS  Google Scholar 

  • Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114

    PubMed  CAS  Google Scholar 

  • Lenhard JM, Kliewer SA, Paulik MA et al (1997) Effects of troglitazone and metformin on glucose and lipid metabolism: alterations of two distinct molecular pathways. Biochem Pharmacol 54:801–808

    PubMed  CAS  Google Scholar 

  • Lenhard JM, Furfine ES, Jain RG et al (2000) HIV protease inhibitors block adipogenesis and increase lipolysis in vitro. Antiviral Res 47:121–129

    PubMed  CAS  Google Scholar 

  • Leow MKS, Addy CL, Mantzoros CS (2003) Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies. J Clin Endocrinol Metab 88:1961–1976

    PubMed  CAS  Google Scholar 

  • Li D, Yea S, Li S et al (2005) Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 280:26941–26952

    PubMed  CAS  Google Scholar 

  • Longo KA, Wright WS, Kang S et al (2004) Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 279:35503–35509

    PubMed  CAS  Google Scholar 

  • Lonn M, Mehlig K, Bengtsson C et al (2010) Adipocyte size predicts incidence of type 2 diabetes in women. FASEB J 24:326–331

    PubMed  Google Scholar 

  • Lumeng CN, Deyoung SM, Saltiel AR (2007) Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 292:E166–E174

    PubMed  CAS  Google Scholar 

  • Masuzaki H, Paterson J, Shinyama H et al (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Kano K, Kondo D et al (2008) Mature adipocytederived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222

    PubMed  CAS  Google Scholar 

  • Moreno-Navarrete JM, Ortega FJ, Rodríguez-Hermosa JI et al (2011) OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes 60(1):168–176

    PubMed  CAS  Google Scholar 

  • Mori T, Sakaue H, Iguchi H et al (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280:12867–12875

    PubMed  CAS  Google Scholar 

  • Morrison RF, Farmer SR (1999) Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem 274:17088–17097

    PubMed  CAS  Google Scholar 

  • Musri MM, Corominola H, Casamitjana R et al (2006) Histone H3 lysine 4 dimethylation signals the transcriptional competence of the adiponectin promoter in preadipocytes. J Biol Chem 281(25):17180–17188

    PubMed  CAS  Google Scholar 

  • Nanbu-Wakao R, Morikawa Y, Matsumura I et al (2002) Stimulation of 3T3-L1 adipogenesis by signal transducer and activator of transcription 5. Mol Endocrinol 16:1565–1576

    PubMed  CAS  Google Scholar 

  • Negrel R, Grimaldi P, Ailhaud G (1978) Establishment of preadipocyte clonal line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones. Proc Natl Acad Sci USA 75:6054–6058

    PubMed  CAS  Google Scholar 

  • Nobusue H, Endo T, Kano K (2008) Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res 332:435–446

    PubMed  CAS  Google Scholar 

  • Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122S–3126S

    PubMed  CAS  Google Scholar 

  • Ortega FJ, Moreno-Navarrete JM, Ribas V et al (2009) Subcutaneous fat shows higher thyroid hormone receptor-alpha1 gene expression than omental fat. Obesity (Silver Spring) 17:2134–2141

    CAS  Google Scholar 

  • Ortega FJ, Moreno-Navarrete JM, Pardo G et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5(2):e9022

    PubMed  Google Scholar 

  • Pairault J, Green H (1979) A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc Natl Acad Sci USA 76:5138–5142

    PubMed  CAS  Google Scholar 

  • Pei H, Yao Y, Yang Y et al (2011) Krüppel-like factor KLF9 regulates PPARγ transactivation at the middle stage of adipogenesis. Cell Death Differ 18(2):315–327

    PubMed  CAS  Google Scholar 

  • Qi CS, Surapureddi S, Zhu YJ et al (2003) Transcriptional coactivator PRIP, the peroxisome proliferator-activated receptor γ (PPARγ)- interacting protein, is required for PPARγ-mediated adipogenesis. J Biol Chem 278:25281–25284

    PubMed  CAS  Google Scholar 

  • Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    PubMed  CAS  Google Scholar 

  • Rask E, Olsson T, Soderberg S et al (2001) Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 86:1418–1421

    PubMed  CAS  Google Scholar 

  • Rebbapragada A, Benchabane H, Wrana JL et al (2003) Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol Cell Biol 23:7230–7242

    PubMed  CAS  Google Scholar 

  • Reusch JE, Colton LA, Klemm DJ (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20:1008–1020

    PubMed  CAS  Google Scholar 

  • Rogers PM, Fusinski KA, Rathod MA et al (2008a) Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes (Lond) 32:397–406

    CAS  Google Scholar 

  • Rogers PM, Mashtalir N, Rathod MA et al (2008b) Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 57:2321–2331

    PubMed  CAS  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    PubMed  CAS  Google Scholar 

  • Rosen ED, Hsu CH, Wang X et al (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16:22–26

    PubMed  CAS  Google Scholar 

  • Ross SE, Hemati N, Longo KA et al (2000) Inhibition of adipogenesis by Wnt signalling. Science 289:950–953

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Kogo Y, Ohgane J et al (2008) Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochem Biophys Res Commun 366(2):360–366

    PubMed  CAS  Google Scholar 

  • Sarruf DA, Iankova I, Abella A et al (2005) Cyclin D3 promotes adipogenesis through activation of peroxisome proliferatoractivated receptor γ. Mol Cell Biol 25:9985–9995

    PubMed  CAS  Google Scholar 

  • Selvarajan S, Lund LR, Takeuchi T et al (2001) A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol 3:267–275

    PubMed  CAS  Google Scholar 

  • Sengenes C, Lolmede K, Zakaroff-Girard A et al (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205:114–122

    PubMed  CAS  Google Scholar 

  • Shimba S, Wada T, Hara S et al (2004) EPAS1 promotes adipose differentiation in 3T3-L1 cells. J Biol Chem 279:40946–40953

    PubMed  CAS  Google Scholar 

  • Shimba S, Ishii N, Ohta Y et al (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102:12071–12076

    PubMed  CAS  Google Scholar 

  • Singh R, Artaza JN, Taylor WE et al (2006) Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-catenin and T-cell factor 4 may bypass canonical Wnt signaling to downregulate adipogenic transcription factors. Endocrinology 147:141–154

    PubMed  CAS  Google Scholar 

  • Smith PJ, Wise LS, Berkowitz R et al (1988) Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263:9402–9408

    PubMed  CAS  Google Scholar 

  • Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    PubMed  CAS  Google Scholar 

  • Stewart PM, Tomlinson JW (2002) Cortisol, 11 beta-hydroxysteroid dehydrogenase type 1 and central obesity. Trends Endocrinol Metab 13:94–96

    PubMed  CAS  Google Scholar 

  • Sugihara H, Yonemitsu N, Miyabara S et al (1986) Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation 31:42–49

    PubMed  CAS  Google Scholar 

  • Suzawa M, Takada I, Yanagisawa J et al (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 5:224–230

    PubMed  CAS  Google Scholar 

  • Tamori Y, Masugi J, Nishino N et al (2002) Role of peroxisome proliferator-activated receptor-γ in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51:2045–2055

    PubMed  CAS  Google Scholar 

  • Tang QQ, Otto TC, Lane MD (2003) CCAAT/enhancerbinding protein β is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA 100:850–855

    PubMed  CAS  Google Scholar 

  • Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101:9607–9611

    PubMed  CAS  Google Scholar 

  • Tang QQ, Gronborg M, Huang H et al (2005) Sequential phosphorylation of C/EBPβ by MAPK and GSK3β is required for adipogenesis. Proc Natl Acad Sci USA 102:9766–9771

    PubMed  CAS  Google Scholar 

  • Tong Q, Dalgin G, Xu H et al (2000) Function of GATA transcription factors in preadipocyte–adipocyte transition. Science 290:134–138

    PubMed  CAS  Google Scholar 

  • Tong Q, Tsai J, Tan G et al (2005) Interaction between GATA and the C/EBP family of transcription factors is critical in GATA mediated suppression of adipocyte differentiation. Mol Cell Biol 25:706–715

    PubMed  CAS  Google Scholar 

  • Villena JA, Kim KH, Sul HS (2002) Pref-1 and ADSF/resistin: two secreted factors inhibiting adipose tissue development. Horm Metab Res 31:664–670

    Google Scholar 

  • Wang GL, Shi X, Salisbury E et al (2006) Cyclin D3 maintains growth-inhibitory activity of C/EBPα by stabilizing C/EBPα-cdk2 and C/EBPα-Brm complexes. Mol Cell Biol 26:2570–2582

    PubMed  CAS  Google Scholar 

  • Weyer C, Foley JE, Bogardus C et al (2000) Enlarged subcutaneous abdominal adipocyte size and but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43:1498–1506

    PubMed  CAS  Google Scholar 

  • Wolfrum C, Shih DQ, Kuwajima S et al (2003) Role of Foxa-2 in adipocyte metabolism and differentiation. J Clin Invest 112:345–356

    PubMed  CAS  Google Scholar 

  • Wu Z, Bucher NL, Farmer SR (1996) Induction of peroxisome proliferator-activated receptor-gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBP-beta, C/EBP-delta, and glucocorticoids. Mol Cell Biol 64:251–260

    Google Scholar 

  • Wu J, Srinivasan SV, Neumann JC et al (2005) The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44:11098–11105

    PubMed  CAS  Google Scholar 

  • Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057

    PubMed  CAS  Google Scholar 

  • Yagi K, Kondo D, Okazaki Y et al (2004) A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun 321:967–974

    PubMed  CAS  Google Scholar 

  • Yarmo MN, Landry A, Molgat AS et al (2009) Macrophage-conditioned medium inhibits differentiation-induced Rb phosphorylation in 3T3-L1 preadipocytes. Exp Cell Res 315:411–418

    PubMed  CAS  Google Scholar 

  • Yu C, Markan K, Temple KA et al (2005) The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor γ transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem 280:13600–13605

    PubMed  CAS  Google Scholar 

  • Zhang B, MacNaul K, Szalkowski D et al (1999) Inhibition of adipocyte differentiation by HIV protease inhibitors. J Clin Endocrinol Metab 84:4274–4277

    PubMed  CAS  Google Scholar 

  • Zhang JW, Klemm DJ, Vinson C et al (2004) Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein β gene during adipogenesis. J Biol Chem 279:4471–4478

    PubMed  CAS  Google Scholar 

  • Zhao L, Gregoire F, Sook Sul H (2000) Transient induction of ENC-1, a Kelch-related actin-binding protein, is required for adipocyte differentiation. J Biol Chem 275:16845–16850

    PubMed  CAS  Google Scholar 

  • Zhu Y, Qi C, Korenberg JR et al (1995) Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPARgamma) gene: alternative promoter use and different splicing yield two mPPARgamma isoforms. Proc Natl Acad Sci USA 92:7921–7925

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by research grants from the Ministerio de Educación y Ciencia (SAF2008-0273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Fernández-Real .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moreno-Navarrete, J.M., Fernández-Real, J.M. (2012). Adipocyte Differentiation. In: Symonds, M. (eds) Adipose Tissue Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0965-6_2

Download citation

Publish with us

Policies and ethics