Advertisement

NO2 Sensors with Reduced Power Consumption Based on Mesoporous Indium Oxide

  • Nicola Donato
  • Thorsten Wagner
  • Michael Tiemann
  • Thomas Waitz
  • Claus-Dieter Kohl
  • Mariangela Latino
  • Giovanni Neri
  • Donatella Spadaro
  • Cesare Malagù
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 109)

Abstract

We report on sensing properties of ordered mesoporous nanostructures of In2O3 synthesized by nanocasting procedure towards NO2. The nanostructured material shows improved recover times and higher responses compared to non nanostructured material at low operating temperatures (100–150°C) thus allowing the use for low power NO2 sensors. These properties may be related to fast oxygen in and out propagation facilitated by an enhanced surface accessibility of the nanostructure.

Keywords

Mesoporous Silica Indium Oxide Reduce Power Consumption Pore Wall Thickness Fast Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wagner T, Kohl C-D, Fröba M, Tiemann M (2006) Gas sensing properties of ordered mesoporous SnO2. Sensors 6:318–323CrossRefGoogle Scholar
  2. 2.
    Wagner T, Waitz T, Roggenbuck J, Fröba M, Kohl C-D, Tiemann M (2007) Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515:8360–8363CrossRefGoogle Scholar
  3. 3.
    Wagner T, Sauerwald T, Kohl C-D, Waitz T, Weidmann C, Tiemann M (2009) Gas sensor based on ordered mesoporous In2O3. Thin Solid Films 517:6170–6175CrossRefGoogle Scholar
  4. 4.
    Lu A-H, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805CrossRefGoogle Scholar
  5. 5.
    Tiemann M (2008) Repeated templating. Chem Mater 20:961–971CrossRefGoogle Scholar
  6. 6.
    Takada T, Suzuki K, Nakane M (1993) Highly sensitive ozone sensor. Sensor Actuator B: Chem 13:404–407CrossRefGoogle Scholar
  7. 7.
    Ivanovskaya M, Gurlo A, Bogdanov P (2001) Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors. Sensor Actuator B: Chem 77:264–267CrossRefGoogle Scholar
  8. 8.
    Gurlo A, Barsan N, Ivanovskaya M, Weimar U, Göpel W (1998) In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sensor Actuator B: Chem 47:92–99CrossRefGoogle Scholar
  9. 9.
    Waitz T, Wagner T, Sauerwald T, Kohl C, Tiemann M (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane Gas sensor. Adv Funct Mater 19:653–661CrossRefGoogle Scholar
  10. 10.
    Ponce MA, Malagù C, Carotta MC, Martinelli G, Aldao CM (2008) Gas indiffusion contribution to impedance in tin oxide thick films. J Appl Phys 104:054907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicola Donato
    • 1
  • Thorsten Wagner
    • 2
  • Michael Tiemann
    • 2
  • Thomas Waitz
    • 3
  • Claus-Dieter Kohl
    • 4
  • Mariangela Latino
    • 5
  • Giovanni Neri
    • 6
  • Donatella Spadaro
    • 6
  • Cesare Malagù
    • 7
    • 8
  1. 1.Department of Matter Physics and Electronic EngineeringUniversity of MessinaMessinaItaly
  2. 2.Department of ChemistryUniversity of PaderbornPaderbornGermany
  3. 3.Institute of Inorganic Chemistry, Chemical DidacticsGeorg-August-UniversitätGöttingenGermany
  4. 4.Institute of Applied PhysicsJustus-Liebig-UniversityGiessenGermany
  5. 5.Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRomeItaly
  6. 6.Department of Industrial Chemistry and Materials EngineeringUniversity of MessinaMessinaItaly
  7. 7.Department of PhysicsUniversity of FerraraFerraraItaly
  8. 8.IDASC - Istituto di Acustica e Sensoristica “O. M. Corbino”RomeItaly

Personalised recommendations