Skip to main content

Case Study of Self-Healing in Metallic Composite with Embedded Low Melting Temperature Solders

  • Chapter
  • First Online:
Biomimetics in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 152))

  • 2419 Accesses

Abstract

In the preceding chapter, we discussed the general principles of the thermodynamics of self-healing with the emphasis on metallic materials. In this chapter, we concentrate on the multiscale nature of self-healing mechanisms. To illustrate the multiscale nature of entropy production, we investigate a particular example of grain growth in metals. After that we discuss a prototype system involving an Al alloy reinforced with microtubes, filled with Sn60Pb40 solder; this is discussed as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balazs, A.C.: Modeling self-healing materials. Mater Today 10, 18–23 (2007)

    Article  Google Scholar 

  • Bryant, M.D., Khonsari, M.M., Ling, F.F.: On the thermodynamics of degradation. Proc. R. Soc. Lond. A 464, 2001–2014 (2008)

    Article  MATH  Google Scholar 

  • Chen, X., Dam, M.A., Ono, K., Mal, A.K., Shen, H., Nutt, S.R., Wudl, F.: A thermally re-mendable crosslinked polymeric material. Science 295, 1698–1702 (2002)

    Article  Google Scholar 

  • Conrad, H., Narayan, J.: On the grain size softening in nanocrystalline materials. Scripta Mater 42, 1025–1030 (2000)

    Article  Google Scholar 

  • Cordier, P., Tournhilac, F., Soulie-Ziakovic, C., Leibler, L.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008)

    Article  Google Scholar 

  • Craig, N.: Entropy analysis: an introduction to chemical thermodynamics. VCH, New York (1992)

    Google Scholar 

  • Fox-Rabinovich, G.S., Totten, G.E. (eds.): Self-organization during friction: advance surface engineered materials and systems design. CRC Taylor and Francis, Boca Raton, FL (2006)

    Google Scholar 

  • Fox-Rabinovich, G.S., Veldhuis, S.C., Kovalev, A.I., Wainstein, D.L., Gershman, I.S., Korshunov, S., Shuster, L.S., Endrino, J.L.: Features of self-organization in ion modified nanocrystalline plasma vapor deposited AlTiN coatings under severe tribological conditions. J. Appl. Phys. 102, 074305 (2007)

    Article  Google Scholar 

  • Friedman, L.H., Chrzan, D.C.: Scaling theory of the Hall-Petch relation for multilayers. Phys Rev. Lett. 81, 2715–2718 (1998)

    Article  Google Scholar 

  • Ghosh, S.K. (ed.): Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • Hayes, S.A., Zhang, W., Branthwaite, M., Jones, F.R.: Self-healing of damage in fibre reinforced polymer-matrix composites. J. R. Soc. Interface 4, 381–386 (2007)

    Article  Google Scholar 

  • Hall, E.O.: Proc. Phys. Soc. B 64, 747–753 (1951)

    Article  Google Scholar 

  • Humphreys, F.J., Hatherly, M.: Recrystallization and Related Annealing Phenomena. Pergamon, Oxford (1995)

    Google Scholar 

  • Hutchinson, J.W.: Int. J. Solid. Struct. 37, 225–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Lucci, J.M., Amano, R., Rohatgi, P.K.: Computational analysis of self-healing in a polymer matrix with microvascular networks. Proceedings of ASME Design Engineering Technical Conference 2008DETC, ASME, NY (2008)

    Google Scholar 

  • Lucci, J.M., Amano, R., Rohatgi, P.K., Schultz, B.: Experimental and computational analysis of self-healing in an aluminum alloy. Proceedings of Mechanical Congress and Exhibition, IMECE2008-68304 (2008a)

    Google Scholar 

  • Lucci, J.M., Amano, R.S., Rohatgi, P.K., Schultz, B.: Self-healing in an aluminum alloy reinforced with microtubes. Proceedings of Energy Nano08 2008b ASME Turbo Expo, ENIC2008-53011

    Google Scholar 

  • Lumley, R.: Advances in self healing of metals. In: van der Zwaag, S. (ed.) Self Healing Materials: an Alternative Approach to 20 Centuries of Materials Science. Springer Series in Materials Science, vol. 100, pp. 219–254. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  • Manuel, M.V.: Principles of self-healing in metals and alloys: an introduction. In: Ghosh, S.K. (ed.) Self-healing Materials: Fundamentals, Design Strategies, and Applications, pp. 251–266. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • Nakao, W., Takahashi, K., Ando, K.: Self-healing of surface cracks in structural ceramics. In: Ghosh, S.K. (ed.) Self-healing Materials: Fundamentals, Design Strategies, and Applications, pp. 183–218. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain-gradient plasticity. J Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  • M. Nosonovsky. Self-organization at the frictional interface for green tribology. Phil. Trans. R. Soc. A (2010b)

    Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Non-adhesive patterned surfaces: superhydrophobicity and wetting regime transitions. Langmuir 24, 1525–1533 (2008a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer-Verlag, Heidelberg, Germany (2008d)

    MATH  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Do hierarchical mechanisms of superhydrophobicity lead to self-organized criticality? Scripta Mater. 59 (2008b)

    Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Thermodynamics of surface degradation, self-organization, and self-healing for biomimetic surfaces. Phil. Trans. R. Soc. A 367 (2009)

    Google Scholar 

  • Nosonovsky, M., Esche, S.K.: A Paradox of decreasing entropy in multiscale Monte Carlo grain growth simulation. Entropy 10, 49–54 (2008a)

    Article  MATH  Google Scholar 

  • Nosonovsky, M., Esche, S.K.: Multiscale effects in crystal grain growth and physical properties of metals. Phys. Chem. Chem. Phys. 10, 5192–5195 (2008b)

    Article  Google Scholar 

  • Nosonovsky, M., Amano, R., Lucci, J.M., Rohatgi, P.K.: Physical chemistry of self-organization and self-healing in metals. Phys. Chem. Chem. Phys. 11, 9530–9536 (2009c)

    Article  Google Scholar 

  • Prigogine, I.: Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New York, NY (1961)

    MATH  Google Scholar 

  • Raabe, D.: Scaling Monte Carlo kinetics of the Potts model using rate theory. Acta Mater 48, 1617–1628 (2000)

    Article  Google Scholar 

  • Raabe, D.: Cellular automata in materials science with particular reference to recrystallization simulation. Ann Rev Mater Res 32, 53–76 (2002)

    Article  Google Scholar 

  • Remmers, J.J.C., de Borst, R.: Numerical Modeling of Self-Healing Mechanisms. In: van der Zwaag, S. (ed.) Self Healing Materials – an Alternative Approach to 20 Centuries of Materials Science, pp. 365–380. Springer, Dordrecht, The Netherlands (2007)

    Chapter  Google Scholar 

  • Sloof, W.G.: Self healing in coatings at high temperatures. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 309–321. Springer, Dordrecht, The Netherlands (2007)

    Chapter  Google Scholar 

  • Vermolen, F.J., Van Rossum, W.G., Javierre, E., Adam, J.A.: Modeling of self-healing of skin tissue. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 337–364. Springer, Dordrecht, The Netherlands (2007)

    Chapter  Google Scholar 

  • Wang, S., Liu, H., Liu, D., Ma, X., Fang, X., Jiang, L.: Enthalpy driven three state switching of a superhydrophilic/superhydrphobic surfaces. Angew. Chem. Int. Ed. 46, 3915–3917 (2007a)

    Article  Google Scholar 

  • Wang, H., Huang, P., Li, Z.: Crack and void healing in metals. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 255–277. Springer, Dordrecht, The Netherlands (2007b)

    Chapter  Google Scholar 

  • Wang, S.T., et al.: Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angewandte Chem. 46, 3915–3917 (2007c)

    Article  Google Scholar 

  • Wool, R.P.: Self-healing materials: a review. Soft Matter 4, 400–418 (2008)

    Article  Google Scholar 

  • Yu, Q., Nosonovsky, M., Esche, S.K.: On the accuracy of Monte Carlo Potts models for grain growth. J Comp. Meth. Sci. Eng. 8, 227–243 (2008)

    MATH  Google Scholar 

  • Zheludkevich, M.: Self-Healing Anti-Corrosion Coatings. In: Ghosh, S.K. (ed.) Self-Healing Materials: Fundamentals, Design Strategies, and Applications, pp. 101–140. Wiley WCH, Weinheim (2009)

    Google Scholar 

  • van der Zwaag, S. (ed.): Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science. Springer, Dordrecht, The Netherlands (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nosonovsky, M., Rohatgi, P.K. (2011). Case Study of Self-Healing in Metallic Composite with Embedded Low Melting Temperature Solders. In: Biomimetics in Materials Science. Springer Series in Materials Science, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0926-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0926-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0925-0

  • Online ISBN: 978-1-4614-0926-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics