Genomics of Hevea Rubber

Chapter

Abstract

Hevea brasiliensis is the most recent domesticated tree species from Amazonian rain forest producing latex of commercial utility. Major hurdles for genetic improvement of rubber tree were attributed to its perennial nature, long juvenile period, and a narrow genetic base. Further, the limited availability of Hevea genomic resources/information is another impediment to genomics-assisted crop improvement. Improvement of rubber tree in terms of latex production through breeding was the major focus of the scientific community dealing with the crop. Due to unidirectional selection for yield, other secondary attributes of rubber plants were lost during the process of developing high-yielding clones. Work on plant genomics gained momentum only after whole genome sequencing of Arabidopsis thaliana in 2000 (Arabidopsis Genome Initiative, 2000) followed by rice (International Rice Genome Sequencing Project, 2002) and poplar, the first tree genome (International Populus Genome Consortium, 2004). However, rubber genomics is still in its infancy. Initial molecular work started in the 1990s with cloning and characterization of latex biosynthesis genes followed by the studies on gene expression influenced by various biotic and abiotic stresses, tapping panel dryness (TPD), and ethylene stimulation of latex production. Simultaneously, different genetic markers were established in rubber for understanding the inheritance and diversity of natural variation existing among the Wickham and wild populations. Genetic markers were used successfully to generate linkage map for QTLs involving disease tolerance. During the last decade, transgenic research also progressed significantly with the development of transgenic Hevea clones with overexpressed MnSOD gene effective against TPD and drought stress. In recent years, with the advent of new-generation sequencing techniques, large-scale EST generation in rubber had been possible, which provided insights into genomic architecture and helped to elucidate genes involved in biological processes like latex production. In the absence of whole genome sequence information, the available transcriptome sequences form a potential resource to be utilized in genetic enhancement of rubber tree. The future challenge is to translate and integrate available genomic knowledge into appropriate methodologies, which we believe will revolutionize future Hevea breeding program.

Keywords

Genomics Hevea brasiliensis Latex transcriptome Linkage map Para rubber tree 

References

  1. Abraham PD, Wycherley PR, Pakianathan SW (1968) Stimulation of latex flow in Hevea brasiliensis by 4-amino-3,5,6-trichloropicolinic acid and 2-chloroethane-phosphonic acid. J Rubber Res Inst Malays 20:291–305Google Scholar
  2. Adiwilaga K, Kush A (1996) Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (Hevea brasiliensis). Plant Mol Biol 30:935–946PubMedCrossRefGoogle Scholar
  3. Aishwarya V, Sharma PC (2007) UgMicroSatdb: database for mining microsatellites from unigenes. Nucleic Acids Res 1:1–4Google Scholar
  4. Archer BL, Audley BG (1987) New aspects of rubber biosynthesis. Bot J Linn Soc 94:181–196CrossRefGoogle Scholar
  5. Arokiaraj P, Wan AR (1991) Agrobacterium-mediated transformation of Hevea cells derived from in vitro and in vivo seedling cultures. J Nat Rubber Res 6:55–61Google Scholar
  6. Arokiaraj P, Jones H, Cheong KF, Coomber S, Charlwood BV (1994) Gene insertion into Hevea brasiliensis. Plant Cell Rep 13:425–430CrossRefGoogle Scholar
  7. Arokiaraj P, Jaafar H, Hamzah S, Yeang HY, Wan AR (1995) Enhancement of Hevea crop potential by genetic transformation: HMGR activity in transformed tissue. In: Proceedings of IRRDB symposium on physiological and molecular aspects of the breeding of Hevea brasiliensis, Penang, Malaysia, pp 74–82Google Scholar
  8. Arokiaraj P, Jones H, Jaafar H, Coomber S, Charlwood BV (1996) Agrobacterium-mediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubber Res 11:77–87Google Scholar
  9. Arokiaraj P, Yeang HF, Cheong KF, Hamzah S, Jones H, Coomber S, Charlwood BV (1998) CaMV 35S promoter directs β-glucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis. Plant Cell Rep 17:621–625CrossRefGoogle Scholar
  10. Arokiaraj P, Ruker F, Obermayr E, Shamsul Bahri AR, Hafsah J, Carter DC, Yeang HY (2002) Expression of human serum albumin in transgenic Hevea brasiliensis. J Nat Rubber Res 5:157–166Google Scholar
  11. Asawatreratanakul K, Zhang YW, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur J Biochem 270:4671–4680PubMedCrossRefGoogle Scholar
  12. Atan S, Low FC, Saleh NM (1996) Construction of a microsatellite enriched library from Hevea brasiliensis. J Nat Rubber Res 11:247–255Google Scholar
  13. Avraham S, Tung CW, Ilic K, Jaiswal P, Kellogg EA, McCouch S, Pujar A, Reiser L, Rhee SY, Sachs MM et al (2008) The plant ontology database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Res 36:D449–D454PubMedCrossRefGoogle Scholar
  14. Baldwin JJT (1947) Hevea: a first interpretation. A cytogenetic survey of a controversial genus, with a discussion of its implications to taxonomy and to rubber production. J Hered 38:54–64Google Scholar
  15. Baulkwill WJ (1989) The history of natural rubber production. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 1–56Google Scholar
  16. Besse P, Lebrun P, Seguin M, Lanaud C (1993) DNA fingerprints in Hevea brasiliensis (rubber tree) using human minisatellite probes. Heredity 70:237–244CrossRefGoogle Scholar
  17. Besse P, Seguin M, Lebrun P, Chevallier MH, Nicolas D, Lanaud C (1994) Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor Appl Genet 88:199–207CrossRefGoogle Scholar
  18. Bini K, Madhavan M, Ravindran M, Thomas KU, Roy Bindu C, Saha T (2010) Single nucleotide polymorphisms in rubber (Hevea brasiliensis) and their inheritance in RRII 400 series hybrid clones. In: Proceedings of plantation crops symposium – PLACROSYM XIX, RRII, Kottayam, IndiaGoogle Scholar
  19. Blanc G, Baptiste C, Oliver G, Martin F, Montoro P (2005) Efficient Agrobacterium tumefaciens mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull. Arg. plants. Plant Cell Rep 24:724–733PubMedCrossRefGoogle Scholar
  20. Bocharova R, Kovaliova IA, Mazurenko LS (2009) Identification of grapevine clone genotypes by use of microsatellite markers. Cytol Genet 43:371–378CrossRefGoogle Scholar
  21. Broekaert I, Lee HI, Kush A, Chua NH, Raikhel N (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci USA 87:7633–7637PubMedCrossRefGoogle Scholar
  22. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  23. Chen S, Peng S, Huang G, Wu K, Fu X, Chen Z (2003) Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Mol Biol 51:51–58PubMedCrossRefGoogle Scholar
  24. Chow KS, Wan KL, Mat IMN, Bahari A, Tan SH, Harikrishna K, Yeang HY (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58:2429–2440PubMedCrossRefGoogle Scholar
  25. Chrestin H (1989) Biochemical aspects of bark dryness induced by overstimulation of rubber tree with Ethrel. In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, pp 341–441Google Scholar
  26. Chrestin H, Gidrol X, Kush A (1997) Towards a latex molecular diagnostic of yield potential and the genetic engineering of the rubber tree. Euphytica 96:77–82CrossRefGoogle Scholar
  27. Chye ML, Cheung KY (1995) beta-1,3-Glucanase is highly expressed in the laticifers of Hevea brasiliensis. Plant Mol Biol 29:397–402PubMedCrossRefGoogle Scholar
  28. Chye ML, Kush A, Tan CT, Chua NH (1991) Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl CoA reductase from Hevea brasiliensis. Plant Mol Biol 16:567–577PubMedCrossRefGoogle Scholar
  29. Chye ML, Tan CT, Chua NH (1992) Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol Biol 3:473–484CrossRefGoogle Scholar
  30. Clément-Demange A, Legnate H, Seguin M, Carron MP, Le Guen V, Chapuset T, Nicolas D (2001) Rubber tree. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. CIRAD-ORSTOM, Montpellier, pp 455–480 (Collection Repères)Google Scholar
  31. Clement-Demange A, Legnate H, Seguin M, Carron MP, Le Guen V, Chapuset T, Nicolas D (2001) Rubber tree. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. CIRAD and Science Publisher Inc., Hyderabad, pp 455–480Google Scholar
  32. Coupé M, Chrestin H (1989) The hormonal stimulation of latex yield: physico-chemical and biochemical mechanisms of hormonal (ethylene) stimulation. In: d’Auzac J, Jacob J-L, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, pp 295–319Google Scholar
  33. d’Auzac J (1964) Mise en evidence de la glycolyse et de ses relations avec la biosynthe’se du caoutchouc au sein du latex d’ Hevea brasiliensis. Revue Ge´ne´rale des Caoutchoucs et Plastiques 41:1831–1834Google Scholar
  34. d’Auzac J (1998) From sucrose to rubber: Hevea as a “green factory”. In: Proceedings of IRRDB symposium on natural rubber (Hevea brasiliensis), vol. I. General, soils and fertilization and breeding and selection, Ho Chi Minh City, 14–15 Oct 1997, pp 10–27Google Scholar
  35. d’Auzac J, Jacob JL, Chrestin H (1989) In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of the rubber tree latex. CRC Press, Boca RatonGoogle Scholar
  36. Davies W (1997) The rubber industry’s biological nightmare. Fortune 136:86Google Scholar
  37. de Faÿ E, Jacob JL (1989) Symptomatology, histological and cytological aspects of the Bark dryness disease. In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, pp 407–430Google Scholar
  38. de Gonçalves PS, Fernando DM, Rossetti AG (1982) Interspecific crosses in the genus Hevea. A preliminary progeny test of SALB resistant dwarf hybrids. Pesq Agropec Brasileira 17(5):775–781Google Scholar
  39. de Goncalves PS, Paiva JR, Sewza RA (1983) Retrospectiva e Atualidade do Melhoramento Genetico da Seringueira (Hevea sp.) no Brasil e em paises Asiatics. EMBRAPA-CNPSD. Documentos 2, ManausGoogle Scholar
  40. de Gonçalves PS, Cardoso M, Ortolani AA (1990) Origin, variability and domestication of Hevea. Pesq Agropec Brasileira 25:135–156Google Scholar
  41. Dean W (1987) Brazil and the struggle for rubber. Cambridge University Press, New YorkGoogle Scholar
  42. Dian K, Sangare A, Diopoh JK (1995) Evidence for specific variation of protein pattern during tapping panel dryness condition development in Hevea brasiliensis. Plant Sci 105:207–216CrossRefGoogle Scholar
  43. Dijkman MJ (1951) Hevea: thirty years of research in the Far East. University Miami Press, Coral GablesGoogle Scholar
  44. Dixon RA, Bouton JH, Narasimhamoorthy B, Saha M, Wang Z-Y, May GD (2007) Beyond structural genomics for plant science. Adv Agron 95:77–161CrossRefGoogle Scholar
  45. Dornelas MC, Rodriguez APM (2005) The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the Leafy/Floricaula gene is preferentially expressed in both male and female floral meristems. J Exp Bot 56:1965–1974PubMedCrossRefGoogle Scholar
  46. Dusotoit-Coucaud A, Brunel N, Kongsawadworakul P, Viboonjun U, Lacointe A, Julien JL, Chrestin H, Sakr S (2009) Sucrose importation into laticifers of Hevea brasiliensis, in relation to ethylene stimulation of latex production. Ann Bot 104:635–647PubMedCrossRefGoogle Scholar
  47. Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, Viboonjun U, Brunel N, Pujade-Renaud V et al (2010) Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis). Tree Physiol 30:1586–1598PubMedCrossRefGoogle Scholar
  48. Fan SW, Yang SQ (1995) Tapping panel dryness induced by excessive tapping is a local senescence phenomenon. Chin J Trop Crops Res 19:15–22Google Scholar
  49. Faridah Y, Siti Arija MA, Ghandimathi H (1996) Changes in some physiological latex parameters in relation to over exploitation and onset of induced tapping panel dryness. J Nat Rubber Res 10:182–186Google Scholar
  50. Feng SP, Li WG, Huang HS, Wang JY, Wu YT (2009) Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breed 23:85–97CrossRefGoogle Scholar
  51. Fong CK, Lek KC, Ping CN (1994) Isolation and restriction analysis of chloroplast DNA from Hevea. J Nat Rubber Res 9:278–288Google Scholar
  52. Gidrol X, Chestin H, Tan HL, Kush A (1994) Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem 269:9278–9283PubMedGoogle Scholar
  53. Gouvea LRL, Rubiano LB, Chioratto AF, Zucchi MI, de Gonçalves PS (2010) Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers. Genet Mol Biol 33(2):308–318PubMedCrossRefGoogle Scholar
  54. Goyvaerts E, Dennis M, Light D, Chua NH (1991) Cloning and sequencing of the cDNA encoding the rubber elongation factor of Hevea brasiliensis. Plant Physiol 97:317–321PubMedCrossRefGoogle Scholar
  55. Gronover CS, Wahler D, Prufer D (2011) Natural rubber biosynthesis and physico-chemical studies on plant derived latex. In: Magdy Elnashar (ed) Biotechnology of biopolymers. Tech Open Access, Rijeka, pp 75–88Google Scholar
  56. Hepper CM, Audley BG (1969) The biosynthesis of rubber from ß-hydroxy-ß-methylglutaryl-coenzyme A in Hevea brasiliensis latex. Biochem J 114:379–386PubMedGoogle Scholar
  57. Imle EP (1978) Hevea rubber: past and future. Econ Bot 32:264–277CrossRefGoogle Scholar
  58. Jacob JL, Prévot JC, Lacrotte R, Clément A, Serres E, Gohet E (1995) Clonal typology of laticifer functioning in Hevea brasiliensis. Plantations Recherche Développement 2:48–49Google Scholar
  59. Jayashree R, Rekha K, Venkatachalam P, Uratsu SL, Kumari Jayasree P, Kala RG, Priya P, Sushma Kumari S, Sobha S, Ashokan MP, Sethuraj MR, Thulaseedharan A, Dandekar AM (2003) Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg.) transgenic plants with a constitutive version of an anti-oxidase stress super oxide dismutase gene. Plant Cell Rep 22:201–209PubMedCrossRefGoogle Scholar
  60. Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492PubMedCrossRefGoogle Scholar
  61. Krishnakumar R, Sasidhar VR, Sethuraj MR (1997) Influence of TPD on cytokinin level in Hevea bark. Indian J Nat Rubber Res 10:107–109Google Scholar
  62. Krishnakumar R, Annamalainathan K, Jacob J (2001) Tapping panel dryness syndrome in Hevea increases dark respiration but not ATP status. Indian J Nat Rubber Res 14:14–19Google Scholar
  63. Kush A, Goyvaerts E, Chye ML, Chua NH (1990) Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci USA 87:1787–1790PubMedCrossRefGoogle Scholar
  64. Lacrotte R, Gidrol X, Vichitcholchai N et al (1995) Protein markers of tapping panel dryness. Plantations Recherche Développement 2:40–45Google Scholar
  65. Lam LV, Thanh T, Chi VTQ, Tuy LM (2009) Genetic diversity of Hevea IRRDB’81 collection assessed by RAPD markers. Mol Biotechnol 42:292–298PubMedCrossRefGoogle Scholar
  66. Le Guen V, Doaré F, Weber C, Seguin M (2009) Genetic structure of Amazonian populations of Hevea brasiliensis is shaped by hydrographical network and isolation by distance. Tree Genet Genomes 5:673–683CrossRefGoogle Scholar
  67. Le Guen V, Gay C, Xiong TC, Souza LM, Rodier-Goud M, Seguin M (2010) Development and characterization of 296 new polymorphic microsatellite markers for rubber tree (Hevea brasiliensis). Plant Breed 130:294–296CrossRefGoogle Scholar
  68. Leclercq J, Lardet L, Martin F, Chapuset T, Oliver G, Montoro P (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg.). Plant Cell Rep 29:513–522PubMedCrossRefGoogle Scholar
  69. Leitch AR, Lim KY, Leitch IJ, O’Neill M, Chye ML, Low FC (1998) Molecular cytogenetic studies in rubber Hevea brasiliensis. Muell. Arg. (Euphorbiaceae). Genome 41:64–467Google Scholar
  70. Lekawipat N, Teerawatannasuk K, Rodier-Goud M, Seguin M, Vanavichit A, Toojinda T, Tragoonrung S (2003) Genetic diversity analysis of wild germplasm and cultivated clones of Hevea brasiliensis Muell. Arg. by using microsatellite markers. J Rubber Res 6:36–47Google Scholar
  71. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnaté H, Seguin M (2000a) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite and isozyme markers. Theor Appl Genet 100:127–138CrossRefGoogle Scholar
  72. Lespinasse D, Grivet L, Troispoux V, Rodier-Goud M, Pinard F, Seguin M (2000b) Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theor Appl Genet 100:975–984CrossRefGoogle Scholar
  73. Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15:5323–5338PubMedCrossRefGoogle Scholar
  74. Li D, Deng Z, Chen C, Xia Z, Wu M, He P, Chen S (2010) Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10:140. doi:10.1186/1471-2229-10-140PubMedCrossRefGoogle Scholar
  75. Li HL, Wang Y, Guo D, Tian WM, Peng SQ (2011) Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Mol Biol Rep 38:4045–4052PubMedCrossRefGoogle Scholar
  76. Low FC, Bonner J (1985) Characterization of the nuclear genome of Hevea brasiliensis. In: Proceedings of international rubber conference, Kuala Lumpur, Malaysia, pp 1–9Google Scholar
  77. Low FC, Atan S, Jaafar H, Tan H (1996) Recent advances in the development of molecular markers for Hevea studies. J Nat Rubber Res 11:32–44Google Scholar
  78. Luo H, van Coppenolle B, Seguin M, Boutry M (1995) Mitochondrial DNA polymorphism and phylogenetic relationships in Hevea brasiliensis. Mol Breed 1:51–63CrossRefGoogle Scholar
  79. Luo MW, Deng LH, Yi XP, Zeng HC, Xiao SH (2009) Cloning and sequence analysis of a novel cis-prenyltransferases gene from Hevea brasiliensis. J Trop Subtrop Bot 17:223–228Google Scholar
  80. Majumder SK (1964) Chromosome studies of some species of Hevea. J Rubber Res Inst Malays 18:269–273Google Scholar
  81. Mathew R, Roy BC, Ravindran M, Nazeer MA, Saha T (2005) Phylogenetic relationships of Hevea species based on molecular markers. Indian J Nat Rubber Res 18:14–25Google Scholar
  82. Miao Z, Gaynor JJ (1993) Molecular cloning, characterization and expression of Mn-superoxide dismutase from the rubber tree (Hevea brasiliensis). Plant Mol Biol 23:267–277PubMedCrossRefGoogle Scholar
  83. Montoro P, Tcinscree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855CrossRefGoogle Scholar
  84. Montoro P, Rattana W, Pugade-Renaud V, Michaux-Ferriere N, Monkolsook Y, Kanthapura R, Adunsadthapong S (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102PubMedCrossRefGoogle Scholar
  85. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedCrossRefGoogle Scholar
  86. Nandris D, Chrestin H, Noirot M, Nicole M, Thouvenel JC, Geiger JP (1991a) The phloem necrosis of the trunk of rubber tree in Ivory Coast. (1) Symptomatology and biochemical characteristics. Eur J For Pathol 21:325–339CrossRefGoogle Scholar
  87. Nandris D, Thouvenel JC, Nicole M, Chrestin H, Rio B, Noirot M (1991b) The phloem necrosis of the trunk of the rubber tree in Ivory Coast. (2) Etiology of the disease. Eur J For Pathol 21:340–353CrossRefGoogle Scholar
  88. Nodari RO, Ducroquet JP, Guerra MP, Meler K (1997) Genetic variability of Feijoa sellowiana germplasm. Acta Hortic 452:41–46Google Scholar
  89. Oh SK, Kang H, Shin DH, Yang J, Han KH (2000) Molecular cloning and characterization of a functional cDNA clone encoding isopentenyl diphosphate isomerase from Hevea brasiliensis. J Plant Physiol 157:549–557CrossRefGoogle Scholar
  90. Omman P, Reghu CP (2003) Staining procedure for laticiferous system of Hevea brasiliensis using Oil Red O. Indian J Nat Rubber Res 16:41–44Google Scholar
  91. Othman R, Arshgad NL, Huat OS, Hashim O, Benong M, Wanchik MG, Aziz MZA, Ghani ZA, Ghani MNA (1995) Potential Hevea genotypes for timber production. In: Proceedings of rubber growers’ conference sustainability & competitiveness, pp 340–360Google Scholar
  92. Peng SQ, Zhu JH, Li HL, Tian WM (2008) Cloning and characterization of a novel cysteine protease gene (HbCP1) from Hevea brasiliensis. J Biosci 33:681–690PubMedCrossRefGoogle Scholar
  93. Peng SQ, Xu J, Li HL, Tian WM (2009) Cloning and molecular characterization of HbCOI1 from Hevea brasiliensis. Biosci Biotechnol Biochem 73:665–670PubMedCrossRefGoogle Scholar
  94. Pires JM (1981) Euphorbiaceae: Hevea camargoana sp. In: Notas de herbario I. Belem, Museu Emilio Goeldi, pp 4–8Google Scholar
  95. Priya P, Venkatachalam P, Thulaseedharan A (2006) Molecular cloning and characterization of the rubber elongation factor gene and its promoter sequence from rubber tree (Hevea brasiliensis): a gene involved in rubber biosynthesis. Plant Sci 171:470–480CrossRefGoogle Scholar
  96. Priyadarshan PM (2003a) Breeding Hevea brasiliensis for environmental constraints. Adv Agron 79:351–400CrossRefGoogle Scholar
  97. Priyadarshan PM (2003b) Contributions of weather variables for specific adaptation of rubber tree (Hevea brasiliensis Muell. Arg.) clones. Genet Mol Biol 26:435–440CrossRefGoogle Scholar
  98. Priyadarshan PM, de Gonçalves PS (2003) Hevea gene pool for breeding. Genet Res Crop Evol 50:101–114CrossRefGoogle Scholar
  99. Pujade-Renaud V, Clement A, Perrot-Recbenmann C, Prevot JC, Chrestin H, Jacob JL et al (1994) Ethylene induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells. Plant Physiol 105:127–132PubMedGoogle Scholar
  100. Pujade-Renaud V, Sanier C, Cambillau L, Arokiaraj P, Jones H, Ruengsri N, Tharreau D, Chrestin H, Montoro P, Narangajavana J (2005) Molecular characterization of new members of the Hevea brasiliensis hevein multigene family and analysis of their promoter region in rice. Biochemica Biophysica Acta 1727:151–161CrossRefGoogle Scholar
  101. Raemer H (1935) Cytology of Hevea. Genetics 17:193Google Scholar
  102. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  103. Ramachandran P, Mathur S, Francis L, Varma A, Mathew NM, Sethuraj MR (2000) Evidence for association of a viroid with tapping panel dryness syndrome of rubber (Hevea brasiliensis). Plant Dis 84:1155CrossRefGoogle Scholar
  104. Rekha K, Jayashree R, Kumary Jayasree P, Venkatachalam P, Thulaseedharan A (2006) An efficient protocol for Agrobacterium-mediated genetic transformation in rubber tree (Hevea brasiliensis). Plant Cell Biotechnol Mol Biol 7:155–158Google Scholar
  105. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahms H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566CrossRefGoogle Scholar
  106. Roy CB, Nazeer MA, Saha T (2004) Identification of simple sequence repeats in rubber (Hevea brasiliensis). Curr Sci 87:807–811Google Scholar
  107. Saha T, Roy CB, Nazeer MA (2005) Microsatellite variability and its use in the characterization of cultivated clones of Hevea brasiliensis. Plant Breed 124:86–92CrossRefGoogle Scholar
  108. Saha T, Roy CB, Ravindran M, Bini K, Nazeer MA (2006) Existence of retroelements in rubber (Hevea brasiliensis) genome. J Plant Crops 34:546–551Google Scholar
  109. Saha T, Roy CB, Ravindran M, Bini K, Nazeer MA (2007) Allelic diversity revealed through SSR polymorphisms at the locus encoding HMG-CoA reductase in rubber (Hevea brasiliensis). Silvae Genetica 56(2):86–92Google Scholar
  110. Saha T, Roy CB, Ravindran M (2010a) Characterization of a family of disease resistant gene analogues (RGAs) in rubber (Hevea brasiliensis) and their relationship with functional RGAs in response to Corynespora infection. In: Proceedings of the national symposium on molecular approaches for management of fungal diseases of crop plants, IIHR, Bangalore, IndiaGoogle Scholar
  111. Saha T, Alam B, Ravindran M, Thomas KU (2010b) Cold-induced gene expression profiling in rubber (Hevea brasiliensis). In: Proceedings of the international workshop on climate change and rubber cultivation. RRII, Kottayam, IndiaGoogle Scholar
  112. Saha T, Thomas M, Sathik MBM, Thulaseedharan A (2010c) Molecular characterization on abiotic stress tolerance and development of transgenic plants of Hevea brasiliensis. In: Proceedings of the International Rubber Research and Development Board (IRRDB) conference on climate change, ChinaGoogle Scholar
  113. Sando T, Takaoka C, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Fukusaki E, Kobayashi A (2008) Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. Biosci Biotechnol Biochem 72:2049–2060PubMedCrossRefGoogle Scholar
  114. Sankariammal L, Mydin KK (2011) Heterosis for growth and test tap yield in Wickham × Amazonian hybrids of Hevea brasiliensis. In: International Rubber Research and Development Board (IRRDB) international workshop on tree breeding, Michelin Plantations, Bahia, BrazilGoogle Scholar
  115. Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215PubMedCrossRefGoogle Scholar
  116. Schultes RE (1977) A new infrageneric classification of Hevea. Bot Mus Leafl Harv Univ 25:243–257Google Scholar
  117. Schultes RE (1987) Studies in the genus Hevea VIII. Notes on intrageneric variants of Hevea brasiliensis (Euphorbiaceae). Econ Bot 41:125–147CrossRefGoogle Scholar
  118. Schultes RE (1990) A brief taxonomic view of the genus Hevea, MRRDB monograph 14. MRRDB, Kuala LumpurGoogle Scholar
  119. Seguin M, Flori A, Legnaté H, Clément-Demange A (2003) Rubber tree. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of tropical crops. CIRAD, France and Science Publ., Enfield, pp 277–306Google Scholar
  120. Simmonds NW (1989) Rubber breeding. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 85–124Google Scholar
  121. Sirinupong N, Suwanmanee P, Doolittle RF, Suvachitanont W (2005) Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl- CoA synthase gene from Hevea brasiliensis. Planta 221:502–512PubMedCrossRefGoogle Scholar
  122. Sivasubramaniam S, Vanniasingham VM, Tan CT, Chua NH (1995) Characterisation of HEVER, a novel stress-induced gene from Hevea brasiliensis. Plant Mol Biol 29:173–178PubMedCrossRefGoogle Scholar
  123. Sobha S, Sushamakumari S, Thanseem I, Kumari Jayasree P, Rekha K, Jayashree R, Kala RG, Asokan MP, Sethuraj MR, Dandekar AM, Thulaseedharan A (2003a) Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S promoter. Curr Sci 85:1767–1773Google Scholar
  124. Sobha S, Sushamakumari S, Thanseem I, Rekha K, Jayashree R, Kala RG, Kumari Jayasree P, Asokan MP, Sethuraj MR, Dandekar AM, Thulaseedharan A (2003b) Abiotic stress induced over-expression of superoxide dismutase enzyme in transgenic Hevea brasiliensis. Indian J Nat Rubber Res 16:45–52Google Scholar
  125. Sookmark U, Pujade-Renaud V, Chrestin H, Lacote R, Naiyanetr C, Seguin M, Romruensukharom P, Narangajavana J (2002) Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome. Plant Cell Physiol 43:1323–1333PubMedCrossRefGoogle Scholar
  126. Souza LM, Mantello CC, Santos MO, de Souza Gonçalves P, Souza AP (2009) Microsatellites from rubber tree (Hevea brasiliensis) for genetic diversity analysis and cross-amplification in six Hevea wild species. Conserv Genet Resour 1:75–79CrossRefGoogle Scholar
  127. Soyza AG (1983) The investigation of the occurring rule and distributing pattern of brown blast disease of rubber tree in Sri Lanka. J Rubber Res Inst Sri Lanka 61:1–6Google Scholar
  128. Suwanmanee P, Suvachittanont W, Fincher GB (2002) Molecular cloning and sequencing of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase from Hevea brasiliensis (HBK) Mull. Arg. Sci Asia 28:29–36CrossRefGoogle Scholar
  129. Suwanmanee P, Sirinupong N, Suvachittanont W (2004) Regulation of the expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene in Hevea brasiliensis (B.H.K.) Mull. Arg. Plant Sci 166:531–537CrossRefGoogle Scholar
  130. Takaya A, Zhanga Y, Asawatreratanakulb K, Wititsuwannakulc D, Wititsuwannakuld R, Takahashia S, Koyamaa T (2003) Cloning, expression and characterization of a functional cDNA clone encoding geranylgeranyl diphosphate synthase of Hevea brasiliensis. Biochim Biophys Acta 1625:214–220PubMedCrossRefGoogle Scholar
  131. Tan H (1987) Strategies in rubber tree breeding. In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. Academic, London, pp 28–54Google Scholar
  132. Tan H, Khoo SK, Ong SH (1996) Selection of advanced polycross progenies in Hevea improvement. J Nat Rubber Res 11:215–225Google Scholar
  133. Tang C, Huang D, Yang J, Liu S, Sakr S, Li H et al (2010) The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell Environ 33:708–1720CrossRefGoogle Scholar
  134. Thanseem I, Venkatachalam P, Thulaseedharan A (2003) Sequence characterization of β-1,3-glucanase gene from Hevea brasiliensis through genomic and cDNA cloning. Indian J Nat Rubber Res 16:106–114Google Scholar
  135. Thanseem I, Joseph A, Thulaseedharan A (2005) Induction and differential expression of β-1,3-glucanase mRNAs in tolerant and susceptible Hevea clones in response to infection by Phytophthora meadii. Tree Physiol 25:1361–1368PubMedCrossRefGoogle Scholar
  136. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequenced-tagged sites (STSs). Theor Appl Genet 86:985–990Google Scholar
  137. Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151:843–856PubMedCrossRefGoogle Scholar
  138. Tupy J (1969) Nucleic acid in latex and production of rubber in Hevea brasiliensis. J Rubber Res Inst Malays 21:468–476Google Scholar
  139. Upadhyay A, Kadam US, Chacko P, Karibasappa GS (2010) Microsatellite and RAPD analysis of grape (Vitis spp.) accessions and identification of duplicates/misnomers in germplasm collection. Indian J Hortic 67:8–15Google Scholar
  140. Uthup TK, Ravindran M, Bini K, Saha T (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4:996–1013Google Scholar
  141. Varghese YA, Knaak C, Sethuraj MR, Ecke W (1998) Evaluation of random amplified polymorphic DNA (RAPD) markers in Hevea brasiliensis. Plant Breed 116:47–52CrossRefGoogle Scholar
  142. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  143. Venkatachalam P, Thomas S, Priya P, Thanseem J, Gireesh T, Saraswathyamma CK, Thulaseedharan A (2002) Identification of DNA polymorphism among clones of Hevea brasiliensis Muell. Arg. using RAPD analysis. Indian J Nat Rubber Res 15:172–181Google Scholar
  144. Venkatachalam P, Priya P, Saraswathyamma CK, Thulaseedharan A (2004) Identification, cloning and sequence analysis of a dwarf genome specific RAPD marker in rubber tree (Hevea brasiliensis). Plant Cell Rep 23:237–332CrossRefGoogle Scholar
  145. Venkatachalam P, Priya P, Gireesh T, Saraswathyamma CK, Thulaseedharan A (2006) Molecular cloning and sequencing of a polymorphic band from rubber tree (Hevea brasiliensis Muell. Arg.): the nucleotide sequence revealed partial homology with proline-specific permease gene sequence. Curr Sci 90:1510–1515Google Scholar
  146. Venkatachalam P, Thulaseedharan A, Raghothama KG (2007) Identification of expression profiles of tapping panel dryness (TPD) associated genes from the latex of rubber tree (Hevea brasiliensis Muell. Arg.). Planta 226:499–515PubMedCrossRefGoogle Scholar
  147. Venkatachalam P, Thulaseedharan A, Raghothama KG (2009) Molecular identification and characterization of a gene associated with the onset of tapping panel dryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell. Arg.) by mRNA differential display. Mol Biotechnol 41:42–52PubMedCrossRefGoogle Scholar
  148. Webster CC, Paardekooper EC (1989) Botany of the rubber tree. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 57–84Google Scholar
  149. Williams JGK, Kumbelik AR, Livakk J, Rafalsk JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  150. Wititsuwannakul R (1986) Diurnal variation of HMGR activity in latex of Hevea brasiliensis and its relation to rubber content. Experientia 42:44–50CrossRefGoogle Scholar
  151. Wycherley PR (1968) Introduction of Hevea to the orient. The Planter 4:1–11Google Scholar
  152. Wycherley PR (1976) Rubber. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 77–80Google Scholar
  153. Wycherley PR (1992) The genus Hevea: botanical aspects. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier, Amsterdam, pp 50–66Google Scholar
  154. Xi WX, Xiao XZ (1988) Study on peroxidase isozyme and syperoxyde dismutase isozyme of TPD hevea trees. Chin J Trop Crops 9:31–36Google Scholar
  155. Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77:299–308Google Scholar
  156. Zeng RZ (1997) The relation between contents of nucleic acid and tapping panel dryness in latex from Hevea brasiliensis. Chin J Crops 18:10–15Google Scholar
  157. Zheng GB, Chen MR (1982) Study of the cause for brown blast disease. Chin J Trop Crops 3:57–61Google Scholar
  158. Zhu J, Zhang Z (2009) Ethylene stimulation of latex production in Hevea brasiliensis. Plant Signal Behav 4:1072–1074PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Genome Analysis LaboratoryRubber Research Institute of IndiaKottayamIndia
  2. 2.Rubber Research Institute of India, Central Experiment StationRanniIndia

Personalised recommendations