Skip to main content

Papaya Genome and Genomics

  • Chapter
  • First Online:
Genomics of Tree Crops

Abstract

Papaya is a major fruit crop of the tropics with minor production in the subtropics. The papaya genome is small (372 Mbp) and has evolutionarily primitive sex chromosomes. These characters justify papaya genomics programs. Recently, a draft of the papaya genome has been sequenced, and the male-specific region of the Y chromosome (MSY) and its corresponding region of the X chromosome have been fully sequenced. Sequencing the papaya genome and the MSY will enhance our capacity to explore the origin and evolution of dioecy in the family of Caricaceae, expand our knowledge on genome evolution by serving as an outgroup for the intensively studied family Brassicaceae, identify candidate genes for target traits, and provide genome-wide DNA markers for papaya improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aradhya MK, Manshardt RM, Zee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Res Crop Evol 46:579–586

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Badillo VM (2000) Carica L. vs. Vasconcella St. Hil. (Caricaceae): con la rehabilitación de este último. Ernstia 10:74–79

    Google Scholar 

  • Blas AL, Yu Q, Chen C, Veatch O, Moore PH, Paull RE, Ming R (2009) Enrichment of a papaya high-density genetic map with AFLP markers. Genome 52:716–725

    Article  PubMed  CAS  Google Scholar 

  • Chan YK, Paull RE (2007) Papaya Carica papaya L., Caricaceae. In: Janick J, Paull RE (eds) Encyclopedia of Fruit and Nuts. CABI, Wallingford, United Kingdom, pp 237–247

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes R, Diebold L, Saw J, Feng Y, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491

    Article  PubMed  CAS  Google Scholar 

  • Czaplewski C, Grzonka Z, Jaskolski M, Kasprzykowski F, Kozk M (1999) Binding modes of a new epoxysuccinyl-peptide inhibitory of cysteine proteases. Where and how do cysteine proteases express their selectivity? Biochem Biophys Acta 1431:290–305

    Article  PubMed  CAS  Google Scholar 

  • Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111

    PubMed  CAS  Google Scholar 

  • Drew RA, Siar SV, O’Brien CM, Sajise AGC (2006) Progress in backcrossing between Carica papaya  ×  Vasconcellea quercifolia intergeneric hybrids and C. papaya. Aust J Exp Agric 46:419–424

    Article  Google Scholar 

  • El Moussaoui A, Nijs M, Paul C, Wintjens R, Vincentelli J, Azarkan M, Looze Y (2001) Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci 58:556–570

    Article  Google Scholar 

  • FAOSTAT (2008) http://faostat.fao.org

    Article  CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10:1466–1472

    Article  CAS  Google Scholar 

  • Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci 87:54–59

    Google Scholar 

  • Hanada K, Zhang X, Borevitz JO, Li W-H, Shiu S-HA (2007) Large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17:632–640

    Article  PubMed  CAS  Google Scholar 

  • Heilborn O (1921) Taxonomical and cytological studies on cultivated Ecuodorian species of Carica. Ark Bot 17:1–16

    Google Scholar 

  • Hofmeyr JDJ (1938) Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. South Africa, Department of Agriculture, Science Bulletin No. 187, 64 pp

    Google Scholar 

  • Hofmeyr JDJ (1939) Sex-linked inheritance in Carica papaya L. S Afr J Sci 36:283–285

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Irwig MS, El-Sohemy A, Baylin A, Rifai N, Campos H (2002) Frequent intake of tropical fruits that are rich in beta-cryptoxanthin in associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. J Nutr 132:3161–3167

    PubMed  CAS  Google Scholar 

  • Jaillon CO et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jobin-Décor MP, Graham GC, Henry RJ, Drew RA (1997) RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Genet Res Crop Evol 44:471–477

    Article  Google Scholar 

  • Kennedy JF, Pike VW (1981) Papain, chymotrypsin and related proteins – a comparative study of their beer chill-proofing abilities and characteristics. Enzyme Microb Technol 3:59–63

    Article  CAS  Google Scholar 

  • Kim MS, Moore PH, Zee F, Fitch MMM, Steige DL, Manshardt RM, Paull RE, Drew RA, Sekioka T, Ming R (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45:503–512

    Article  PubMed  CAS  Google Scholar 

  • Kumar LSS, Abraham A, Srinivasan VK (1945) The cytology of Carica papaya Linn. Indian J Agric Sci 15:242–253

    Google Scholar 

  • Lindsay RH (1930) The chromosomes of some dioecious angiosperms. Am J Bot 17:152–174

    Article  Google Scholar 

  • Liu A, Moore PH, Ma H, Ackerman CM, Makandar R, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436

    Article  PubMed  CAS  Google Scholar 

  • Manshardt RM, Drew RA (1998) Biotechnology of papaya. Acta Hortic 461:65–73

    Google Scholar 

  • Manshardt RM, Wenslaff TF (1989) Inter-specific hybridization of papaya with other species. J Am Soc Hortic Sci 114:689–694

    Google Scholar 

  • Mekkes JR, le Poole IC, Das PK, Kammeyer A, Westerhof W (1997) In vitro tissue-digesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. Int J Biochem Cell Biol 29:703–706

    Article  PubMed  CAS  Google Scholar 

  • Meurman O (1925) The chromosome behavior of some dioecious plants and their relatives with special reference to the sex chromosomes. Soc Sci Fennica Comm Biol 2:105p

    Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899

    Article  CAS  Google Scholar 

  • Ming R, Van Droogenbroeck B, Moore PH, Zee FT, Kynd T, Scheldeman X, Sekioka T, Gheysen G (2005) Molecular diversity of Carica papaya and related species. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1B: Phanerograms. Science Publishers, Enfield, pp 229–254

    Google Scholar 

  • Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice D, Albert H, Wang M-L, Zhu YJ, Schatz M, Nagarajan N, Agbayani R, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na J-K, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo M-C, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Rodriquez-Pastor MC, Galan-Sauco V, Herrero-Romero M (1990) Evaluation of papaya autogamy. Fruits 45:387–391

    Article  Google Scholar 

  • Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Genet 93:547–553

    Article  CAS  Google Scholar 

  • Storey WB (1938a) The primary flower types of papaya and the fruit types that developed from them. Proc Am Soc Hort Sci 35:80–82

    Google Scholar 

  • Storey WB (1938b) Segregations of sex types in Solo papaya and their application to the selections of seed. Proc Am Soc Hortic Sci 35:83–85

    Google Scholar 

  • Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agric Exp Stn Bull 87:5–22

    Google Scholar 

  • Storey WB (1953) Genetics of papaya. J Hered 44:70–78

    Google Scholar 

  • Storey WB (1969) Papaya. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. H Veenman & Zonen N.V, Wageningen, pp 21–24

    Google Scholar 

  • Storey WB (1976) Papaya. In: Simmonds NW (ed) The evolution of crop plants. Longman, London, pp 21–24

    Google Scholar 

  • Suguira T (1927) Some observations on the meiosis of the pollen mother cells of Carica papaya, Myrica rubra, Acuba japonica, and Beta vulgaris. Bot Mag 41:219–224

    Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • USDA (2001) USDA national nutrient database for standard reference, release 17. Papayas, raw: measure 3 (whole papaya, edible portion). http://www.nal.usda.gov/fnic/foodcomp/Data/SR17/reports/sr17fg09.pdf

  • Van Droogenbroeck B, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, Gheysen G (2002) AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theor Appl Genet 105:289–297

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wai CM, Ming R, Moore PH, Paull RE, Yu Q (2010) Development of chromosome-specific ­cytogenetic markers and merging of linkage fragments in papaya. Tropical plant biology 3:171–181

    Google Scholar 

  • Watson B (1997) Agronomy/Agroclimatology notes for the production of papaya. Ministry of Agriculture Forests Fisheries and Meterology, Australia

    Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperm: calibrating the family tree. Proc Biol Sci 268:2211–2220

    Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibl Genet 3:1–62

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Hou S, Hobza R, Feltus FA, Wang X, Jin W, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang J, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Hou S, Feltus FA, Jones MR, Murray J, Veatch O, Lemke C, Saw JH, Moore RC, Thimmapuram J, Liu L, Moore PH, Alam M, Jiang J, Paterson AH, Ming R (2008a) Low X/Y divergence in four pairs of papaya sex-liked genes. Plant J 53:124–132

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Navajas-Pérez R, Tong E, Robertson J, Moore PH, Paterson AH, Ming R (2008b) Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Top Plant Biol 1:49–57

    Article  Google Scholar 

  • Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo M-C, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371

    Article  PubMed  Google Scholar 

  • Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wai CM, Ming R, Yu Q, Jiang J (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Tropical plant biology 3:166–170

    Google Scholar 

Download references

Acknowledgments

The authors thank the following agencies and programs for funding relevant parts of the research: NSF Plant Genome Research Program, USDA-ARS Cooperative Agreements with the Hawaii Agriculture Research Center, USDA T-STAR program through the University of Hawaii at Manoa, and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ming, R., Yu, Q., Moore, P.H. (2012). Papaya Genome and Genomics. In: Schnell, R., Priyadarshan, P. (eds) Genomics of Tree Crops. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0920-5_8

Download citation

Publish with us

Policies and ethics