Genomics of Temperate Fruit Trees

  • María José Aranzana
  • Iban Eduardo
  • Santiago Vilanova
  • Carlos Romero
  • Ana Montserrat Martín-Hernández
Chapter

Abstract

Temperate fruit species are those adapted to climates in the middle ­latitudes and according to their fruits are usually classified as fruit and nut trees, vine, and berries. Most of the best-known temperate tree crops are members of the Rosaceae family, including pome fruits (e.g., apple, pear, loquat, and quince) and stone fruits (e.g., apricot, cherry, peach, and plum). During the last decades, many efforts have been made in the field of genetics and genomics of these species. Such efforts have generated important tools like molecular markers, genetic and physical maps, SNP arrays and microarrays, among others, ready to be applied in variability studies, in breeding programs, and in general in the better understanding of the genetics behind agricultural important traits in these species. Here we present a brief summary of genomic studies on the most important temperate fruit trees grown for edible use.

Keywords

Temperate fruit trees Rosaceae Pome fruits Stone fruits Genetic variability Fruit trees self-incompatibility Marker assisted selection Fruit trees breeding 

References

  1. Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Fourth Int Peach Symp 1–2:41–49Google Scholar
  2. Abel PP, Nelson RS, Hoffmann DB, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743PubMedGoogle Scholar
  3. Aggarwal K, Lee KH (2003) Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic 2:175–184PubMedGoogle Scholar
  4. Ainsley PJ, Collins GG, Sedgley M (2002) Factors affecting Agrobacterium-mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill.). J Hortic Sci Biotechnol 76:522–528Google Scholar
  5. Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399PubMedGoogle Scholar
  6. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44PubMedGoogle Scholar
  7. Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:184–184Google Scholar
  8. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  9. Arús PYT, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27:175–211Google Scholar
  10. Arús P, Picañol R, Howad W (2010) Almond (Prunus dulcis) as a source of genetic variability for peach (Prunus persica). In: Plant and animal genome XVIII conference, San Diego, CA, USAGoogle Scholar
  11. Bao L, Chen KS, Zhang D, Cao YF, Yamamoto T, Teng YW (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959–971Google Scholar
  12. Bartolini G, Prevost G, Messeri C, Carignani G (1998) Olive germplasm: cultivars and world-wide collections. FAO Library, RomeGoogle Scholar
  13. Bassil N, Lewers K (2009) Genomics opportunities, new crops and new products. In: Genetics and genomics of Rosaceae. Springer, New York, pp 55–70Google Scholar
  14. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744PubMedGoogle Scholar
  15. Belaj A, Munoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100:449–458PubMedGoogle Scholar
  16. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890PubMedGoogle Scholar
  17. Bell RL, Scorza R, Srinivasan C, Webb K (1999) Transformation of ‘Beurre Bosc’ pear with the rolC gene. J Am Soc Hortic Sci 124:570–574Google Scholar
  18. Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507Google Scholar
  19. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425PubMedGoogle Scholar
  20. Blenda AV, Wechter WP, Reighard GL, Baird WV, Abbott AG (2006) Development and characterization of diagnostic AFLP markers in Prunus persica for its response to peach tree short life syndrome. J Hortic Sci Biotechnol 81:281–288Google Scholar
  21. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350Google Scholar
  22. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529PubMedGoogle Scholar
  23. Bokszczanin K, Dondini L, Przybyla AA (2009) First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim. J Appl Genet 50:99–103PubMedGoogle Scholar
  24. Bolar JP, Norelli JL, Wong KW, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77PubMedGoogle Scholar
  25. Boskovic R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250Google Scholar
  26. Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59PubMedGoogle Scholar
  27. Breton C, Pinatel C, Medail F, Bonhomme F, Berville A (2008) Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant Sci 175:524–532Google Scholar
  28. Brini W, Mars M, Hormaza JI (2008) Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hortic 115:337–341Google Scholar
  29. Broothaerts W, Keulemans J, Van Nerum I (2004) Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep 22:497–501PubMedGoogle Scholar
  30. Bulley SM, Wilson FM, Hedden P, Phillips AL, Croker SJ, James DJ (2005) Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnol J 3:215–223PubMedGoogle Scholar
  31. Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon JM, Jean-Marc RCMGC (2009) Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem 115:1133–1140Google Scholar
  32. Burgos L, Pérez-Tornero O, Ballester J, Olmos E (1998) Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reprod 11:153–158Google Scholar
  33. Bus VGM, Chagne D, Bassett HCM, Bowatte D, Calenge F, Celton JM, Durel CE, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236Google Scholar
  34. Bus VGM, Esmenjaud D, Buck E, Laurens F (2009) Application of genetic markers in rosaceous crops. In: Genetics and Genomics of Rosaceae. Springer, New York. pp. 563–600Google Scholar
  35. Bus V, Bassett H, Bowatte D, Chagné D, Ranatunga C, Ulluwishewa D, Wiedow C, Gardiner S (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487Google Scholar
  36. Busot GY, McClure B, Ibarra-Sánchez CP, Jiménez-Durán K, Vázquez-Santana S, Cruz-García F (2008) Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue. J Exp Bot 59:3187–3201PubMedGoogle Scholar
  37. Byrne DH (2007) Molecular marker use in perennial plant breeding. In: Proceedings of the Ivth international symposium on rose research and cultivation, pp 163–167Google Scholar
  38. Caballero P, Fernández MA (2004) Loquat, production and market. Options Méditerrannéennes 58:11–20Google Scholar
  39. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562PubMedGoogle Scholar
  40. Campeol E, Flamini G, Chericoni S, Catalano S, Cremonini R (2001) Volatile compounds from three cultivars of Olea europaea from Italy. J Agric Food Chem 49:5409–5411PubMedGoogle Scholar
  41. Canli FA (2004) Development of a second generation genetic linkage map for sour cherry using SSR markers. Pak J Biol Sci 7:1676–1683Google Scholar
  42. Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209Google Scholar
  43. Capote N, Perez-Panades J, Monzo C, Carbonell E, Urbaneja A, Scorza R, Ravelonandro M, Cambra M (2008) Assessment of the diversity and dynamics of Plum pox virus and aphid populations in transgenic European plums under Mediterranean conditions. Transgenic Res 17:367–377PubMedGoogle Scholar
  44. Carrera L, Sanzol J, Herrero M, Hormaza JI (2009) Genomic characterization of self-incompatibility ribonucleases (S-RNases) in loquat (Eriobotrya japonica Lindl.) (Rosaceae, Pyrinae). Mol Breed 23:539–551Google Scholar
  45. Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307PubMedGoogle Scholar
  46. Castro AJ, Bednarczyk A, Schaeffer-Reiss C, Rodriguez-Garcia MI, Van Dorsselaer A, Alche JD (2010) Screening of Ole e 1 polymorphism among olive cultivars by peptide mapping and N-glycopeptide analysis. Proteomics 10:953–962PubMedGoogle Scholar
  47. Cavanna M, Marinoni DT, Bounous G, Botta R (2008) Genetic diversity in ancient apple germplasm from northwest Italy. J Hortic Sci Biotechnol 83:549–554Google Scholar
  48. Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107Google Scholar
  49. Cervera M, López MM, Navarro L, Peña L (1998) Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiol Mol Plant Pathol 52:67–78Google Scholar
  50. Cevik V, King GJ (2002) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945PubMedGoogle Scholar
  51. Cevik V, Ryder C, Popovich A, Manning K, King G, Seymour G (2010) A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.). Tree Genet Genomes 6:271–279Google Scholar
  52. Chagne D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage color in apple. BMC Genomics 8:212PubMedGoogle Scholar
  53. Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358PubMedGoogle Scholar
  54. Chan ZL, Wang Q, Xu XB, Meng XH, Qin GZ, Li BQ, Tian SP (2008) Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 8:4791–4807PubMedGoogle Scholar
  55. Chaparro JX, Werner DJ, Omalley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815Google Scholar
  56. Chen M, Chen X, Zhou J, Liu Y, Ci Z, Wu Y (2005) Changes of aroma constituents in apricot during fruit development. Sci Agric Sin 38:1244–1299Google Scholar
  57. Chen JL, Yan S, Feng Z, Xiao L, Hu HS (2006) Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chem 97:248–255Google Scholar
  58. Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227Google Scholar
  59. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach Prunus persica (L) Batsch: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72Google Scholar
  60. Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228PubMedGoogle Scholar
  61. Cirvilleri G, Spina S, Iacona C, Catara A, Muleod R (2008) Study of rhizosphere and phyllosphere bacterial community and resistance to bacterial canker in genetically engineered phytochrome A cherry plants. J Plant Physiol 165:1107–1119PubMedGoogle Scholar
  62. Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580Google Scholar
  63. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–1327PubMedGoogle Scholar
  64. Consolandi C, Palmieri L, Doveri S, Maestri E, Marmiroli N, Reale S, Lee D, Baldoni L, Tosti N, Severgnini M, De Bellis G, Castiglioni B (2007) Olive variety identification by ligation detection reaction in a universal array format. J Biotechnol 129:565–574PubMedGoogle Scholar
  65. Consolandi C, Palmieri L, Severgnini M, Maestri E, Marmiroli N, Agrimonti C, Baldoni L, Donini P, De Bellis G, Castiglioni B (2008) A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR-universal array analysis. Eur Food Res Technol 227:1429–1438Google Scholar
  66. Costa F, Van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586Google Scholar
  67. Crane MB, Brown AG (1937) Incompatibility and sterility in the sweet cherry, Prunus avium L. J Pomol Hortic Sci 15:86–116Google Scholar
  68. da Câmara L, Machado M, da Câmara MA, Hanzer V, Weiss H, Regner F, Steinkeliner H, Mattanovich D, Plail R, Knapp E, Kaltho B, Katinger HWD (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum pox virus. Plant Cell Rep 11:25–29Google Scholar
  69. Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384Google Scholar
  70. Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13PubMedGoogle Scholar
  71. de Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert WF (1996) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554Google Scholar
  72. de Bondt A, Zaman S, Broekaert WF, Cammue B, Keulemans J (1998) Genetic transformation of apple (Malus pumila Mill.) for increased fungal resistance: in vitro antifungal activity in protein extracts of transgenic apple expressing RS-AFP2 or ACE-AMP1. Acta Hortic 484:565–570Google Scholar
  73. de La Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  74. de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin, pp 1–215Google Scholar
  75. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  76. Decroocq V, Hagen LS, Fave MG, Eyquard JP, Pierronnet A (2004) Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Mol Breed 13:135–142Google Scholar
  77. Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689PubMedGoogle Scholar
  78. Degenhardt J, Al-Masri AN, Kurkcuoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335PubMedGoogle Scholar
  79. Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156PubMedGoogle Scholar
  80. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467PubMedGoogle Scholar
  81. Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994PubMedGoogle Scholar
  82. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31Google Scholar
  83. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach Prunus persica (L.) Batsch and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138PubMedGoogle Scholar
  84. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838PubMedGoogle Scholar
  85. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896PubMedGoogle Scholar
  86. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2007) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13Google Scholar
  87. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418Google Scholar
  88. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249Google Scholar
  89. Dondini L, Pierantoni L, Ancarani V, D’Angelo M, Cho KH, Shin IS, Musacchi S, Kang SJ, Sansavini S (2008) The inheritance of the red color character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett’. Plant Breed 127:524–526Google Scholar
  90. Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125:76–80Google Scholar
  91. Druart P, Delporte F, Brazda M, Ugarte-Ballon C, da Câmara MA, da Câmara L, Machado M, Jacquemin J, Watillon B (1998) Genetic transformation of cherry trees. Acta Hortic 468:71–76Google Scholar
  92. Dumanoglu H, Gunes NT, Aygun A, San B, Akpinar AE, Bakir M (2009) Analysis of clonal variations in cultivated quince (Cydonia oblonga ‘Kalecik’) based on fruit characteristics and SSR markers. N Z J Crop Hortic Sci 37:113–120Google Scholar
  93. Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analyzed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521Google Scholar
  94. Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213PubMedGoogle Scholar
  95. Escalettes V, Dahuron F, Ravelonandro M, Dosba F (1994) Utilisation de la transgénose pour l’obtention de pruniers et d’abricotiers exprimant le gène de la protéine capside du Plum pox potyvirus. Bull OEPP/EPPO Bull 24:705–711Google Scholar
  96. Esmenjaud D, Dirlewanger E (2007) Plum. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4: Fruits and nuts. Springer, Berlin, pp 119–135Google Scholar
  97. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427PubMedGoogle Scholar
  98. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159PubMedGoogle Scholar
  99. Evans KM, Govan CL, Fernandez-Fernandez F (2008) A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers. Genome 51:1026–1031PubMedGoogle Scholar
  100. Fabbri A, Lambardi M, Ozden-Tokatli Y (2009) Olive breeding. In: Priyadarshan PM, Jain M (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 423–465Google Scholar
  101. Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504PubMedGoogle Scholar
  102. Faize M, Sourice S, Dupuis F, Parisi L, Gautier MF, Chevreau E (2004) Expression of wheat puroindoline-b reduces scab susceptibility in transgenic apple (Malus × domestica Borkh.). Plant Sci 167:347–354Google Scholar
  103. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930PubMedGoogle Scholar
  104. Fang JG, Twito T, Zhang Z, Chao CCT (2006) Genetic relationships among fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49:1256–1264PubMedGoogle Scholar
  105. FAOSTAT (2010) ProdStat: http://faostat.fao.org/site/339/default.aspx. Last time accessed Mar 2010
  106. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71PubMedGoogle Scholar
  107. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145Google Scholar
  108. Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010a) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263PubMedGoogle Scholar
  109. Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, Hofer M, Dorschel C, Schmoock S, Gau AE, Halbwirth H, Hanke MV (2010b) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635PubMedGoogle Scholar
  110. Folta KM, Gardiner SE (2009) Genetics and genomics of Rosaceae. Springer, New York, pp 636Google Scholar
  111. Fonseca S, Hackler L, Zvara A, Ferreira S, Balde A, Dudits D, Pals MS, Puskas LG (2004) Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays. Plant Sci 167:457–469Google Scholar
  112. Fukuda S, Hiehata N, Yamamoto T, Terai O, Nesumi H (2005) Development of DNA markers linked to the resistance gene (Pse a) to loquat canker. J Jpn Soc Hortic Sci 74:345–349Google Scholar
  113. Fuzfai Z, Katona ZF, Kovacs E, Molnar-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem 52:7444–7452PubMedGoogle Scholar
  114. Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera N, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128PubMedGoogle Scholar
  115. Gao ZS, van de Weg WE, Schaart JG, van Arkel G, Breiteneder H, Hoffmann-Sommergruber K, Gilissen L (2005) Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor Appl Genet 111:1087–1097PubMedGoogle Scholar
  116. Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42Google Scholar
  117. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4: Fruits and nuts. Springer, Berlin, pp 1–62Google Scholar
  118. Garkava-Gustavsson L, Brantestam AK, Sehic J, Nybom H (2008) Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas 145:99–112PubMedGoogle Scholar
  119. Gasic K, Han YP, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411Google Scholar
  120. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158PubMedGoogle Scholar
  121. Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842Google Scholar
  122. Ghosh AK, Lukens LN, Hunter DM, Strommer JN (2006) European and Asian pears: simple sequence repeat-polyacrylamide gel electrophoresis-based analysis of commercially important North American cultivars. HortScience 41:304–309Google Scholar
  123. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076Google Scholar
  124. Gil FS, Busconi M, Machado AD, Fogher C (2006) Development and characterization of microsatellite loci from Olea europaea. Mol Ecol Notes 6:1275–1277Google Scholar
  125. Gilissen L, Bolhaar STH, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg WE, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369PubMedGoogle Scholar
  126. Gisbert AD, Lopez-Capuz I, Soriano JM, Llacer G, Romero C, Badenes ML (2009a) Development of microsatellite markers from loquat, Eriobotrya japonica (Thunb.) Lindl. Mol Ecol Resour 9:803–805PubMedGoogle Scholar
  127. Gisbert AD, Romero C, Martinez-Calvo J, Leida C, Llacer G, Badenes ML (2009b) Genetic diversity evaluation of a loquat (Eriobotrya japonica (Thunb) Lindl) germplasm collection by SSRs and S-allele fragments. Euphytica 168:121–134Google Scholar
  128. Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-García F, McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810PubMedGoogle Scholar
  129. Goldway M, Sapir G, Stern RA (2007) Molecular basis and horticultural application of the gametophytic self-incompatibility system in Rosaceous tree fruit. Plant Breed Rev 28:215–237Google Scholar
  130. Golz JF, Oh HY, Su V, Kusaba M, Newbigin E (2001) Genetic analysis of Nicotiana pollen-part mutants is consistent with the presence of an S-ribonuclease inhibitor at the S locus. Proc Natl Acad Sci USA 98:15372–15376PubMedGoogle Scholar
  131. Granell A, Crisosto CH, Martí-Ibáñez C, Gradziel TM, Froment J, Peace C (2006) “ChillPeach” a functional database to understand peach chilling injury. In: Third international Rosaceae genomics conference, Napier. http://mainlabclemsonedu/gdr/comunity/conferences/RG3_abstractspdf
  132. Grimplet J, Romieu C, Audergon J-M, Marty I, Albagnac G, Lambert P, Bouchet J-P, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13006 expressed sequence tags. Physiol Plant 125:281–292Google Scholar
  133. Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81:39–44Google Scholar
  134. Guarino C, Arena S, De Simone L, D’Ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M (2007) Proteomic analysis of the major soluble components in Annurca apple flesh. Mol Nutr Food Res 51:255–262PubMedGoogle Scholar
  135. Guichard E, Souty M (1988) Comparison of the relative quantities of aroma compounds found in fresh apricot (Prunus armeniaca) from 6 different varieties. Z Lebensm Unters Forsch 186:301–307Google Scholar
  136. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254Google Scholar
  137. Guillot S, Peytavi L, Bureau S, Boulanger R, Lepoutre JP, Crouzet J, Schorr-Galindo S (2006) Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem 96:147–155Google Scholar
  138. Gutiérrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580Google Scholar
  139. Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745Google Scholar
  140. Hammerschlag FA, Smigocki AC (1998) Growth and in vitro propagation of peach plants transformed with the shooty mutant strain of Agrobacterium tumefaciens. HortScience 33:897–899Google Scholar
  141. Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637PubMedGoogle Scholar
  142. Han YP, Chagne D, Gasic K, Rikkerink EHA, Beever JE, Gardiner SE, Korban SS (2009) BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics 93:282–288PubMedGoogle Scholar
  143. Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746Google Scholar
  144. Hauck NR, Yamane H, Tao R, Iezzoni AF (2006) Accumulation of non-functional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172:1191–1198PubMedGoogle Scholar
  145. He LX, Ban Y, Inoue H, Matsuda N, Liu JH, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141PubMedGoogle Scholar
  146. Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11PubMedGoogle Scholar
  147. Herndl A, Marzban G, Kolarich D, Hahn R, Boscia D, Hemmer W, Maghuly F, Stoyanova E, Katinger H, Laimer M (2007) Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. Electrophoresis 28:437–448PubMedGoogle Scholar
  148. Heyens K, Valcke R, Dumont D, Robben J, Noben JP (2006) Differential expression of proteins in apple following inoculation with Erwinia amylovoria. Acta Hort(ISHS) 704:489–494Google Scholar
  149. Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436PubMedGoogle Scholar
  150. Hily JM, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18:794–799PubMedGoogle Scholar
  151. Hily JM, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R (2007) Plum poxvirus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to Plum pox virus in Nicotiana benthamiana Domin. and plum (Prunus domestica L.). J Am Soc Hortic Sci 132:850–858Google Scholar
  152. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683Google Scholar
  153. Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294Google Scholar
  154. Hormaza JI, Yamane H, Rodrigo J (2007) Apricot. In: Genome Mapping and Molecular Breeding in plants (Fruits and Nuts). Springer-Verlag, Berlin pp 171–187Google Scholar
  155. Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu YS, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428PubMedGoogle Scholar
  156. Horvath A, Zanetto A, Tavaud M, Christmann H, Laigret F (2008) Origin of sour cherry (Prunus cerasus L.) genomes. In: Proceedings of the Vth international cherry symposium, vol 1–2, pp 131–136Google Scholar
  157. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedGoogle Scholar
  158. Huang S, Lee HS, Karunanandaa B, Kao TH (1994) Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell 6:1021–1028PubMedGoogle Scholar
  159. Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416PubMedGoogle Scholar
  160. Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98:13167–13171PubMedGoogle Scholar
  161. Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16:235–243Google Scholar
  162. Ikeda K, Ushijima K, Yamane H, Tao R, Hauck NR, Sebolt AM, Iezzoni AF (2005) Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sex Plant Reprod 17:289–296Google Scholar
  163. Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184Google Scholar
  164. Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arus P (2009) Linkage map saturation, construction, and comparison in four populations of Prunus. J Hortic Sci Biotechnol 84:168–175Google Scholar
  165. Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H (2006) Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci Hortic 107:254–258Google Scholar
  166. Ishikawa S, Kato S, Imakawa S, Mikami T, Shimamoto Y (1992) Organelle DNA polymorphism in apple cultivars and rootstocks. Theor Appl Genet 83(8):963–967Google Scholar
  167. James DJ, Uratsu SL, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectans like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563Google Scholar
  168. Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16PubMedGoogle Scholar
  169. Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arus P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176Google Scholar
  170. Jimenez S, Li ZG, Reighard GL, Bielenberg DG (2010) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10:25PubMedGoogle Scholar
  171. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F-2 progeny. Theor Appl Genet 97:1034–1041Google Scholar
  172. Joshi S, Soriano JM, Schaart J, Broggini GAL, Szankowski I, Jacobsen E, Krens F, Schouten H (2009) Approaches for development of cisgenic apples. Transgenic Plant J 3:40–46Google Scholar
  173. Juárez-Díaz JA, McClure B, Vázquez-Santana S, Guevara-García A, León-Mejía P, Márquez-Guzmán J, Cruz–García F (2006) A novel thioredoxin h is secreted in Nicotiana alata and reduces S-RNases in vitro. J Biol Chem 281:3418–3424PubMedGoogle Scholar
  174. Jung S, Main D, Staton M, Cho IH, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:8Google Scholar
  175. Jung S, Jiwan D, Cho IH, Lee TI, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76PubMedGoogle Scholar
  176. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301PubMedGoogle Scholar
  177. Katayama H, Adachi S, Yamamoto T, Uematsu C (2007) A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Evol 54:1573–1585Google Scholar
  178. Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121Google Scholar
  179. Kitahara K, Matsumoto S, Yamamoto T, Soejima J, Kimura T, Komatsu H, Abe K (2005) Molecular characterization of apple cultivars in Japan by S-RNase analysis and SSR markers. J Am Soc Hortic Sci 130:885–892Google Scholar
  180. Ko K, Norelli JL, Reynoird JP, Boresjza-Wysocka E, Brown SK, Aldwinckle HS (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol Lett 22:373–381Google Scholar
  181. Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81Google Scholar
  182. Krath BN, Eriksen FD, Pedersen BH, Gilissen L, Van de Weg WE, Dragsted LO (2009) Development of hypo-allergenic apples: silencing of the major allergen Mal d 1 gene in ‘Elstar’ apple and the effect of grafting. J Hortic Sci Biotechnol 84:52–57Google Scholar
  183. Kundu JK, Briard P, Hily JM, Ravelonandro M, Scorza R (2008) Role of the 25–26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with Plum pox virus. Virus Genes 36:215–220PubMedGoogle Scholar
  184. Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50:29–42PubMedGoogle Scholar
  185. Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513PubMedGoogle Scholar
  186. Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polak J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping Plum pox virus resistance. Tree Genet Genomes 4:481–493Google Scholar
  187. Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ × ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309Google Scholar
  188. Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF (2009) Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315–4333PubMedGoogle Scholar
  189. Lau JM, Korban SS (2010) Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. J Plant Physiol. doi:10.1016/j.jplph.2010.02.003Google Scholar
  190. Layne REC, Sherman WB (1986) Interspecific hybridization of Prunus. HortScience 21:48–51Google Scholar
  191. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6:S16PubMedGoogle Scholar
  192. Lee YP, Yu GH, Seo YS, Han SE, Choi YO, Kim D, Mok IG, Kim WT, Sung SK (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926PubMedGoogle Scholar
  193. Lee CB, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol 149:791–802PubMedGoogle Scholar
  194. Leida C, Martí GJT, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy-release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666PubMedGoogle Scholar
  195. Lewis D, Modlibowska I (1942) Genetical studies in pears IV. Pollen-tube growth and incompatibility. J Genet 43:211–222Google Scholar
  196. Li HH, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254PubMedGoogle Scholar
  197. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241Google Scholar
  198. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  199. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T, Espley R, Hellens R, Allan A (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50PubMedGoogle Scholar
  200. Lopes MS, Sefc KM, Laimer M, Machado AD (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26Google Scholar
  201. Lopes MS, Mendonca D, Sefc KM, Gil FS, Machado AD (2004) Genetic evidence of intra-cultivar variability within Iberian olive cultivars. HortScience 39:1562–1565Google Scholar
  202. López-Noguera S, Petri C, Burgos L (2009) Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Rep 28:1781–1790PubMedGoogle Scholar
  203. Lu X-E, Liu Y-Q (2008) Analysis of volatile oil in pre and post processed pieces of Eriobotrya japonica by GC-MS. Zhong Yao Cai 31:1625–1626PubMedGoogle Scholar
  204. Luu DT, Qin XK, Morse D, Cappadocia M (2000) S-RNase uptake by compatible pollen tubes in GSI. Nature 407:649–651PubMedGoogle Scholar
  205. Maghuly F, Machado AD, Leopold S, Khan MA, Katinger H, Laimer M (2007) Long-term stability of marker gene expression in Prunus subhirtella: a model fruit tree species. J Biotechnol 127:310–321PubMedGoogle Scholar
  206. Maheswaran G, Pridmore L, Franz P, Anderson MA (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26:773–782PubMedGoogle Scholar
  207. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73Google Scholar
  208. Malnoy M, Aldwinckle HS (2009) Apple transformation and translational genomics. In: Genetics and genomics of Rosaceae. Springer, New York, pp 143–162Google Scholar
  209. Malnoy M, Venisse JS, Chevreau E (2005a) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49Google Scholar
  210. Malnoy M, Faize M, Venisse JS, Geider K, Chevreau E (2005b) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:632–638PubMedGoogle Scholar
  211. Malnoy M, Jin Q, Borejsza-Wysocka EE, He Y, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:568–1580Google Scholar
  212. Malnoy M, Borejsza-Wysocka EE, Pascal-Omenaca L, Aldwinckle HS, Oh CS, Beer SV (2008a) Silencing of HIPM, the apple protein that interacts with HrpN Of Erwinia amylovora. Acta Hortic 793:261–264Google Scholar
  213. Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008b) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458PubMedGoogle Scholar
  214. Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to Plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425–435Google Scholar
  215. Marchese A, Boskovic R, Caruso T, Raimondo A, Cutuli M, Tobutt KR (2007) A new self-incompatibility haplotype in sweet cherry ‘Kronio’, S5′ attributable to a pollen-part mutation in the SFB gene. J Exp Bot 58:4347–4356PubMedGoogle Scholar
  216. Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hortic Sci 78:410–416Google Scholar
  217. McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957PubMedGoogle Scholar
  218. McClure B, Mou B, Canevascini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc Natl Acad Sci USA 96:13548–13553PubMedGoogle Scholar
  219. McClure BA, Cruz-García F, Beecher B, Sulaman W (2000) Factors affecting inter- and intra-specific pollen rejection in Nicotiana. Ann Bot 85:113–123Google Scholar
  220. McCouch SR (2001) Genomics and synteny. Plant Physiol 125:152–155PubMedGoogle Scholar
  221. Messeguer R, Arus P, Carrera M (1987) Identification of peach cultivars with pollen isozymes. Sci Hortic 31:107–117Google Scholar
  222. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434Google Scholar
  223. Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18PubMedGoogle Scholar
  224. Micheletti D, Troggio M, Baldi P, Costa F, Malnoy M, Magnano P, Velasco R, Salvi S (2010) LD estimation, analyses of diversity and domestication in apple. In: Second international symposium on genomics of plant genetic resources, Bologna, April 2010Google Scholar
  225. Mnejja M, Garcia-Mas M, Howad W, Badenes ML, Arus P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166Google Scholar
  226. Mnejja M, Garcia-Mas J, Howad W, Arus P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5:531–535Google Scholar
  227. Mnejja M, Garcia-Mas J, Audergon J-M, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes. doi: 10.1007/s11295-010-0284-z Google Scholar
  228. Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize. Theor Appl Genet 110:92–105PubMedGoogle Scholar
  229. Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hortic Sci 78:279–287Google Scholar
  230. Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52:252–260PubMedGoogle Scholar
  231. Napoli A, Aiello D, Di Donna L, Moschidis P, Sindona G (2008) Vegetable proteomics: the detection of ole e 1 isoallergens by peptide matching of MALDI MS/MS spectra of underivatized and dansylated glycopeptides. J Proteome Res 7:2723–2732PubMedGoogle Scholar
  232. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedGoogle Scholar
  233. Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, Gonzalez M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43PubMedGoogle Scholar
  234. O’farrell PZ, Goodman HM, Ofarrell PH (1977) High-resolution 2-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1141PubMedGoogle Scholar
  235. Obenland DM, Vensel WH, Hurkman WJ (2008) Alterations in protein expression associated with the development of mealiness in peaches. J Hortic Sci Biotechnol 83:85–93Google Scholar
  236. Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397PubMedGoogle Scholar
  237. Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587PubMedGoogle Scholar
  238. Olukolu BA, Trainin T, Fan SH, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828PubMedGoogle Scholar
  239. Oraguzie NC, Yamamoto T, Soejima J, Suzuki T, De Silva HN (2005) DNA fingerprinting of apple (Malus spp.) rootstocks using simple sequence repeats. Plant Breed 124:197–202Google Scholar
  240. Oshita S, Shima K, Haruta T, Seo Y, Kawagoe Y, Nakayama S, Takahara H (2000) Discrimination of odors emanating from ‘La France’ pear by semi-conducting polymer sensors. Comput Electron Agric 26:209–216Google Scholar
  241. Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A (2003) Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to Plum pox virus without preventing local infection. BMC Biotechnol 3:7PubMedGoogle Scholar
  242. Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824PubMedGoogle Scholar
  243. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21–31Google Scholar
  244. Pedreschi R, Vanstreels E, Carpentier S, Hertog M, Lammertyn J, Robben J, Noben JP, Swennen R, Vanderleyden J, Nicolai BM (2007) Proteomic analysis of core breakdown disorder in conference pears (Pyrus communis L.). Proteomics 7:2083–2099PubMedGoogle Scholar
  245. Pedreschi R, Hertog M, Robben J, Lilley KS, Karp NA, Baggerman G, Vanderleyden J, Nicolai B (2009) Gel-based proteomics approach to the study of metabolic changes in pear tissue during storage. J Agric Food Chem 57:6997–7004PubMedGoogle Scholar
  246. Pedryc A, Ruthner S, Hermán R, Krska B, Hegedus A, Halász J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci Hortic 121:19–26Google Scholar
  247. Pereira-Lorenzo S, Ramos-Cabrer AM, Gonzalez-Diaz AJ, Diaz-Hernandez MB (2008) Genetic assessment of local apple cultivars from La Palma, Spain, using simple sequence repeats (SSRs). Sci Hortic 117:160–166Google Scholar
  248. Pérez-Clemente RM, Pérez-Sanjuán A, García-Férriz L, Beltrán JP, Cañas LA (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breed 14:419–427Google Scholar
  249. Peschel S, Franke R, Schreiber L, Knoche M (2007) Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 68:1017–1025PubMedGoogle Scholar
  250. Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26PubMedGoogle Scholar
  251. Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324PubMedGoogle Scholar
  252. Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317Google Scholar
  253. Pilarova P, Marandel G, Decroocq V, Salava J, Krska B, Abbott AG (2010) Quantitative trait analysis of resistance to Plum pox virus in the apricot F1 progeny “Harlayne” × “Vestar”. Tree Genet Genomes 6:467–475Google Scholar
  254. Puterka GJ, Bocchetti C, Dang P, Bell RL, Scorza R (2002) Pear transformed with a lytic peptide gene for disease control affects nontarget organism, Pear Psylla (Homoptera: Psyllidae). J Econ Entomol 95:797–802PubMedGoogle Scholar
  255. Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:571–581Google Scholar
  256. Qin GZ, Meng XH, Wang Q, Tian SP (2009a) Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J Proteome Res 8:2449–2462PubMedGoogle Scholar
  257. Qin GZ, Wang Q, Liu J, Li BQ, Tian SP (2009b) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics 9:4241–4253PubMedGoogle Scholar
  258. Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. In: Proceedings of the Xxv international horticultural congress, vol 11, pp 233–241Google Scholar
  259. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P-davidiana. Theor Appl Genet 109:884–897PubMedGoogle Scholar
  260. Rallo P, Dorado G, Martin A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989Google Scholar
  261. Rallo P, Tenzer I, Gessler C, Baldoni L, Dorado G, Martin A (2003) Transferability of olive microsatellite loci across the genus Olea. Theor Appl Genet 107:940–946PubMedGoogle Scholar
  262. Ramos-Cabrer AM, Diaz-Hernandez MB, Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hortic Sci Biotechnol 82:257–265Google Scholar
  263. Ravelonandro M, Briard P, Monsion M, Scorza R, Renaud R (2002) Stable transfer of the Plum Pox Virus (PPV) capsid transgene to seedlings of two French cultivars ‘Prunier d’Ente 303’ and ‘Quetsche 2906’, and preliminary results of PPV challenge assays. Acta Hortic 577:91–96Google Scholar
  264. Reale S, Doveri S, Diaz A, Angiolillo A, Lucentini L, Pilla F, Martin A, Donini P, Lee D (2006) SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49:1193–1205PubMedGoogle Scholar
  265. Renaut J, Hausman JF, Bassett C, Artlip T, Cauchie HM, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genetics & Genomes 4:589–600PubMedGoogle Scholar
  266. Reuter A, Fortunato D, Garoffo LP, Napolitano L, Scheurer S, Giuffrida MG, Vieths S, Conti AD (2005) Novel isoforms of Pru av 1 with diverging immunoglobulin E binding properties identified by a synergistic combination of molecular biology and proteomics. Proteomics 5:282–289PubMedGoogle Scholar
  267. Reynoird JP, Mourgues F, Norelli JL, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31Google Scholar
  268. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347Google Scholar
  269. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654PubMedGoogle Scholar
  270. Roe MR, Griffin TJ (2006) Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Proteomics 6:4678–4687PubMedGoogle Scholar
  271. Romero C, Pedryc A, Muñoz V, Llácer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252PubMedGoogle Scholar
  272. Romero C, Vilanova S, Burgos L, Martínez-Calvo J, Vicente M, Llácer G, Badenes ML (2004) Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56:145–157PubMedGoogle Scholar
  273. Rowan DD, Hunt MB, Alspach PA, Whitworth CJ, Oraguzie NC (2009a) Heritability and genetic and phenotypic correlations of apple (Malus × domestica) fruit volatiles in a genetically diverse breeding population. J Agric Food Chem 57:7944–7952PubMedGoogle Scholar
  274. Rowan DD, Hunt MB, Dimouro A, Alspach PA, Weskett R, Volz RK, Gardiner SE, Chagne D (2009b) Profiling fruit volatiles in the progeny of a ‘Royal Gala’ × ‘Granny Smith’ apple (Malus × domestica) cross. J Agric Food Chem 57:7953–7961PubMedGoogle Scholar
  275. Royo J, Kuntz C, Kowyama Y, Anderson M, Clarke AE (1994) Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc Natl Acad Sci USA 91:6511–6514PubMedGoogle Scholar
  276. Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304Google Scholar
  277. Rudell DR, Mattheis JR (2009) Superficial scald development and related metabolism is modified by postharvest light irradiation. Postharvest Biol Technol 51:174–182Google Scholar
  278. Rudell DR, Mattheis JP, Curry FA (2008) Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J Agric Food Chem 56:1138–1147PubMedGoogle Scholar
  279. Rudell DR, Mattheis JP, Hertog M (2009) Metabolomic change precedes apple superficial scald symptoms. J Agric Food Chem 57:8459–8466PubMedGoogle Scholar
  280. Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384PubMedGoogle Scholar
  281. Sargent DJ, Marchese A, Simpson DW, Howad W, Fernandez-Fernandez F, Monfort A, Arus P, Evans KM, Tobutt KR (2009) Development of “universal” gene-specific markers from Malus spp. cDNA sequences, their mapping and use in synteny studies within Rosaceae. Tree Genet Genomes 5:133–145Google Scholar
  282. Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Redh.). Plant Cell Physiol 33:811–814Google Scholar
  283. Sassa H, Hirano H, Nishio T, Koba T (1997) Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J 12:223–227Google Scholar
  284. Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881PubMedGoogle Scholar
  285. Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma JH, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway([w]). Plant Physiol 144:1899–1912PubMedGoogle Scholar
  286. Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus domestica L) express the Plum pox virus coat protein gene. Plant Cell Rep 14:18–22Google Scholar
  287. Sefc KM, Lopes S, Mendonca D, Dos Santos MR, Machado MLD, Machado AD (2000) Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173PubMedGoogle Scholar
  288. Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination. Plant Cell Rep 29(6):561–572. doi:10.1007/s00299-010-0845-5PubMedGoogle Scholar
  289. Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang S, T-h K (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302–305PubMedGoogle Scholar
  290. Solis-Solis HM, Calderon-Santoyo M, Gutierrez-Martinez P, Chorr-Galindo SS, Ragazzo-Sancheza JA (2007) Discrimination of eight varieties of apricot (Prunus armeniaca) by electronic nose, LLE and SPME using GC-MS and multivariate analysis. Sens Actuat B-Chem 125:415–421Google Scholar
  291. Song GQ, Sink KC (2006) Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus × P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep 25:117–123PubMedGoogle Scholar
  292. Sonneveld T, Tobbutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17:37–51PubMedGoogle Scholar
  293. Soriano JM, Romero C, Vilanova S, Llacer G, Badenes ML (2005) Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome 48:108–114PubMedGoogle Scholar
  294. Soriano JM, Vera-Ruiz EM, Vilanova S, Martinez-Calvo J, Llacer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring Plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4:391–402Google Scholar
  295. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach Prunus persica (L.) Batsch. Theor Appl Genet 101:421–428Google Scholar
  296. Sosinski B, Shulaev V, Dhingra A, Kalyanaraman A, Bumgarner R, Rokhsar D, Verde I, Velasco R, Abbott AG (2009) Rosaceaous genome sequencing: perspectives and progress. In: Genetics and genomics of Rosaceae. Springer, New York, pp 601–615Google Scholar
  297. Stockinger EJ, Mulinix CA, Long CM, Brettin TS, Iezzoni AF (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture population. J Hered 87:214–218PubMedGoogle Scholar
  298. Stoeckli S, Mody K, Gessler C, Patocchi A, Jermini M, Dorn S (2008) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes 4:833–847Google Scholar
  299. Sung SK, Jeong DH, Nam JM, Kim SH, Kim SR, An G (1998) Expressed sequence tags of fruits, peels, and carpels and analysis of mRNA expression levels of the tagged cDNAs of fruits from the Fuji apple. Mol Cells 8:565–577PubMedGoogle Scholar
  300. Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with stilbene synthase gene from grapevine (Vitis vinifera L.) and PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149PubMedGoogle Scholar
  301. Szankowski I, Flachowsky H, Li HH, Halbwirth H, Treutter D, Regos I, Hanke MV, Stich K, Fischer TC (2009a) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692PubMedGoogle Scholar
  302. Szankowski I, Waidmann S, Degenhardt J, Patocchi A, Paris R, Silfverberg-Dilworth E, Broggini G, Gessler C (2009b) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358Google Scholar
  303. Takahashi H, Sumitani H, Inada Y, Mori D, Nakano Y (2000) Potent aroma volatiles in fresh loquat and its canned product. J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kogaku Kaishi 47:302–310Google Scholar
  304. Takasaki T, Okada K, Castillo C, Moriya Y, Saito T, Sawamura Y, Norioka N, Norioka S, Nakanishi T (2004) Sequence of the S-9-RNase cDNA and PCR-RFLP system for discriminating S-1- to S-9-allele in Japanese pear. Euphytica 135:157–167Google Scholar
  305. Takeoka GR, Buttery RG, Flath RA (1992) Volatile constituents of Asian pear (Pyrus serotina). J Agric Food Chem 40:1925–1929Google Scholar
  306. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedGoogle Scholar
  307. Tao R, Watari A, Hanada T, Habu T, Yaegaki H, Yamaguchi M, Yamane H (2007) Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol Biol 63:109–123PubMedGoogle Scholar
  308. Teo G, Suziki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847PubMedGoogle Scholar
  309. Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752PubMedGoogle Scholar
  310. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520PubMedGoogle Scholar
  311. Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188Google Scholar
  312. Tian L, Canli FA, Wang X, Sibbald S (2009) Genetic transformation of Prunus domestica L. using the hpt gene coding for hygromycin resistance as the selectable marker. Sci Hortic 119:339–343Google Scholar
  313. Tittarelli A, Santiago M, Morales A, Meisel LA, Silva H (2009) Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol 9:121PubMedGoogle Scholar
  314. Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray mu PEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci 170:606–613Google Scholar
  315. Urtubia C, Devia J, Castro A, Zamora P, Aguirre C, Tapia E, Barba P, Dell’Orto P, Moynihan MR, Petri C, Scorza R, Prieto H (2008) Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Rep 27:1333–1340PubMedGoogle Scholar
  316. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781PubMedGoogle Scholar
  317. Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J 39:573–586PubMedGoogle Scholar
  318. van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502Google Scholar
  319. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao QZ, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326. doi: 10.1371/journal.pone.0001326 PubMedGoogle Scholar
  320. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus [times] domestica Borkh.). Nat Genet 42:833–839PubMedGoogle Scholar
  321. Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7:307–310Google Scholar
  322. Vikram A, Prithiviraj B, Hamzehzarghani H, Kushalappa A (2004a) Volatile metabolite profiling to discriminate diseases of McIntosh apple inoculated with fungal pathogens. J Sci Food Agric 84:1333–1340Google Scholar
  323. Vikram A, Prithiviraj B, Kushalappa AC (2004b) Use of volatile metabolite profiles to discriminate fungal diseases of Cortland and empire apples. J Plant Pathol 86:215–225Google Scholar
  324. Vilanova S, Romero C, Abernathy D, Abbott AG, Burgos L, Llacer G, Badenes ML (2003) Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Mol Genet Genomics 269:685–691PubMedGoogle Scholar
  325. Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C (2006a) Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol 142:629–641PubMedGoogle Scholar
  326. Vilanova S, Soriano JM, Lalli DA, Romero C, Abbott AG, Llacer G, Badenes ML (2006b) Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial artificial chromosome library. Mol Ecol Notes 6:789–791Google Scholar
  327. Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:421Google Scholar
  328. Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, Postman JD (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hortic Sci 131:408–417Google Scholar
  329. Volk GM, Richards CM, Henk AD, Reilley A, Miller DD, Forsline PL (2009) Novel diversity identified in a wild apple population from the Kyrgyz Republic. HortScience 44:516–518Google Scholar
  330. Wang D, Karle R, Brettin TS, Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97:1217–1224Google Scholar
  331. Wang Y, Tsukamoto T, Yi KW, Huang S, McCubbin AG, Kao TH (2004) Chromosome walking in the Petunia inflata self-incompatibility (S-) locus and gene identification in an 881-kb contig containing S2-RNase. Plant Mol Biol 54:727–742PubMedGoogle Scholar
  332. Wang W, Alche JD, Rodriguez-Garcia MI (2007) Characterization of olive seed storage proteins. Acta Physiol Plantarum 29:439–444Google Scholar
  333. Wang YJ, Yang CX, Li SH, Yang L, Wang YN, Zhao JB, Jiang Q (2009) Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chem 116:356–364Google Scholar
  334. Watanabe M, Yamamoto T, Ohara M, Nishitani C, Yahata S (2008) Cultivar differentiation identified by SSR markers and the application for polyploid loquat plants. J Jpn Soc Hortic Sci 77:388–394Google Scholar
  335. Watari A, Hanada T, Yamane H, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Beppu K, Kataoka I (2007) A low transcriptional level of Se-RNase in the Se-haplotype confers self-compatibility in Japanese plum. J Am Soc Hortic Sci 132:396–406Google Scholar
  336. Weeden NF, Hemmat M, Lawson DM, Lodhi M, Bell RL, Manganaris AG, Reisch BI, Brown SK, Ye GN (1994) Development and application of molecular marker linkage maps in woody fruit crops. Euphytica 77:71–75Google Scholar
  337. Wehrhahn C, Allard RW (1965) Detection and measurement of effects of individual genes involved in inheritance of a quantitative character in wheat. Genetics 51:109PubMedGoogle Scholar
  338. Welander M, Pawlicki N, Holefors A, Wilson F (1998) Genetic transformation of the apple rootstock M26 with the RolB gene and its influence on rooting. J Plant Physiol 153:371–380Google Scholar
  339. Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263PubMedGoogle Scholar
  340. Wen XP, Ban YSK, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103PubMedGoogle Scholar
  341. Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant 133:298–317PubMedGoogle Scholar
  342. Wünsch A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Sci Hortic 120:348–352Google Scholar
  343. Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach Prunus persica (L.) Batsch SSR sequences. Heredity 89:56–63PubMedGoogle Scholar
  344. Wünsch A, Hormaza JI (2004) Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17:203–210Google Scholar
  345. Xu ML, Song JQ, Cheng ZK, Jiang JM, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113PubMedGoogle Scholar
  346. Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814PubMedGoogle Scholar
  347. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001a) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870Google Scholar
  348. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001b) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278Google Scholar
  349. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137Google Scholar
  350. Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara I, Hayashi T (2002b) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301Google Scholar
  351. Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T (2004a) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54:239–244Google Scholar
  352. Yamamoto T, Kirnura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004b) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. In: Proceedings of the XIth eucarpia symposium on fruit breeding and genetics, vols 1 and 2, pp 51–56Google Scholar
  353. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329Google Scholar
  354. Yamamoto T, Terakami S, Kimura T, Sawamura Y, Takada N, Hirabayashi T, Imai T, Nishitani C (2009) Reference genetic linkage maps of European and Japanese pears. Acta Hortic 814:599–602Google Scholar
  355. Yamane H, Tao R (2009) Molecular basis of self-(in)compatibility and current status of S-genotyping in Rosaceous fruit trees. J Jpn Soc Hortic Sci 78:137–157Google Scholar
  356. Yamane H, Ikeda K, Hauck NR, Iezzoni F, Tao R (2003) Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. J Exp Bot 54:2431–2437PubMedGoogle Scholar
  357. Zhang CF, Tian SP (2009) Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 degrees C. Food Chem 115:405–411Google Scholar
  358. Zhang GR, Sebolt AM, Sooriyapathirana SS, Wang DC, Bink M, Olmstead JW, Iezzoni AF (2009) Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36Google Scholar
  359. Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krska B, Abbott AG (2008a) Origin of resistance to Plum pox virus in Apricot: what new AFLP and targeted SSR data analyses tell. Tree Genet Genomes 4:403–417Google Scholar
  360. Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arus P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008b) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745–756Google Scholar
  361. Zhu LH, Li XY, Ahlman A, Welander M (2003) The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci 165:829–835Google Scholar
  362. Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296PubMedGoogle Scholar
  363. Zohary D, Hopf M (1994) Domestication of plants in the old world, 2nd edn. Clarendon, OxfordGoogle Scholar
  364. Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • María José Aranzana
    • 1
  • Iban Eduardo
    • 1
  • Santiago Vilanova
    • 2
  • Carlos Romero
    • 3
  • Ana Montserrat Martín-Hernández
    • 1
  1. 1.Department of Plant GeneticsIRTA – Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UBBarcelonaSpain
  2. 2.Instituto Universitario de Conservación y Mejora de la Agrodiversidad ValencianaUniversidad Politécnica de ValenciaValenciaSpain
  3. 3.Citricultura y Producción VegetalInstituto Valenciano de Investigaciones AgrariasMoncada, ValenciaSpain

Personalised recommendations