Skip to main content

Genetic Transformation of Fruit Trees

Abstract

Since the twentieth century, classical breeding strategies have been used to produce improved fruit trees. However, breeders have to deal with many problems due to their long juvenile period, open pollination, self-incompatibility, hetererozygosity and the time involved before selected phenotypes can be properly evaluated. Transformation with genes that mediate horticulturally important traits is a truly revolutionary approach for improving perennial species, as it implies that superior cultivars can be modified for a specific trait without otherwise altering the integrity of the clone. This review discusses the progress that has been made using transformation technologies to address important breeding objectives of perennial fruit species and also underlines the current limitations of this technology.

Keywords

  • Agrobacterium tumefaciens
  • Breeding
  • Embryogenesis
  • Disease resistance
  • Fruit tree
  • Genetic transformation
  • Organogenesis
  • Pest resistance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-0920-5_5
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-0920-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  • Agritope (1999) Research and development-Agritope, Inc. http://www.agritope.com/rd_main.html

  • Aldwinckle HS, Borejsza Wysocka EE, Malnoy M, Brown SK, Norelli JL, Beer SV, Meng X, He SY, Jin QL (2003) Development of fire blight resistant apple cultivars by genetic engineering. Acta Hortic 622:105–111

    CAS  Google Scholar 

  • Alfenas PF, Braz ASK, Torres LB, Santana EN, Nascimiento AVS, Carvalho MG, Otoni WC, Zerbini FM (2005) Transgenic passionfruit expressing RNA derived from Cowpea aphid-borne mosaic virus is resistant to passionfruit woodiness disease. Fitopatol Bras 30:33–38

    Google Scholar 

  • Arias M, Camadro E, Diaz-Ricci J, Castagnaro A (2004) Breeding barriers between the cultivated strawberry, Fragaria  ×  ananassa, and related wild germplasm. Euphytica 136:139–150

    Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    PubMed  CAS  Google Scholar 

  • Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD (2003) Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112–120

    PubMed  CAS  Google Scholar 

  • Becker DK (1999) The transformation of banana with potential virus resistance genes. Ph.D. thesis, Queensland University of Technology, Brisbane

    Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    PubMed  CAS  Google Scholar 

  • Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    CAS  Google Scholar 

  • Borejsza-Wysocka EE, Malnoy M, Meng X, Bonasera JM, Nissinen RM, Kim JF, Beer SV, Aldwinckle HS (2004) Silencing of apple proteins that interact with dspE, a pathogenicity effector from Erwinia amylovora, as a strategy to increase resistance to fire blight. Acta Hortic 663:469–473

    CAS  Google Scholar 

  • Bornhoff B-A, Harst M, Zyprian E, Töpfer R (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep 24:433–438

    PubMed  CAS  Google Scholar 

  • Botella J (2002) Application for licence for intentional release of a GMO into the environment: Application No. DIR 026/2002. www.health.gov.au/internet/ogtr/publishing.nsf/Content/…4/…/dir026.rtf

  • Botella JR, Cavallaro AS, Cazzonelli CI (2000) Towards the production of transgenic pineapple to control flowering and ripening. Acta Hortic 529:115–122

    CAS  Google Scholar 

  • Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1995) Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Rep 15:1–7

    CAS  Google Scholar 

  • Cai W, Gonsalves C, Tennant P, Fermin G, Souza M, Sarindu N, Jan F, Zhu H, Gonsalves D (1999) A protocol for efficient transformation and regeneration of Carica papaya L. In Vitro Cell Dev Biol-Plant 35:61–69

    CAS  Google Scholar 

  • Callahan A, Scorza R (2007) Effects of a peach antisense acc oxidase gene on plum fruit quality. Acta Hortic 738:567–573

    CAS  Google Scholar 

  • Cancino GO, Davey MR, Lowe KC, Power JB (1998) Shoot regeneration from leaf and root explants of Passiflora mollissima. J Exp Bot 49(Suppl):65 (Abstract)

    Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Peña L (1998a) Genetic ­transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res 7:51–59

    CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Peña L (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    CAS  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    PubMed  CAS  Google Scholar 

  • Chalavi V, Tabaeizadeh Z, Thibodeau P (2003) Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene. J Am Soc Hort Sci 128:747–753

    CAS  Google Scholar 

  • Chanderbali A, Albert V, Ashworth V, Clegg M, Litz RE, Soltis D, Soltis P (2008) Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. Bioessays 30:386–396

    PubMed  Google Scholar 

  • Cheng YH, Yang JS, Yeh SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep 16:127–132

    CAS  Google Scholar 

  • Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing biosynthetic genes. Plant Cell Rep 21:365–373

    CAS  Google Scholar 

  • Cruz-Hernández A, Gómez-Lim MA (1995) Alternative oxidase from mango (Mangifera indica L.) is differentially regulated during fruit ripening. Planta 197:569–576

    PubMed  Google Scholar 

  • Cruz-Hernández A, Gómez-Lim MA, Litz RE (1997) Transformation of mango somatic embryos. Acta Hortic 455:292–298

    Google Scholar 

  • Cruz-Hernández A, Witjaksono, Litz RE, Gómez-Lim M (1998) Agrobacterium tumefaciens-mediated transformation of embryogenic avocado cultures and regeneration of somatic embryos. Plant Cell Rep 17:497–503

    Google Scholar 

  • Damiano C, Monticelli S, Gentile A, Di Nicola-Negri E, Ilardi V (2007) Efficiency of Prunus transformation for PPV-resistance by gene silencing and PPV coat protein gene strategies. Acta Hortic 764:63–70

    CAS  Google Scholar 

  • Darrow GM (1966) The strawberry: history, breeding and physiology. Holt, Rinehart and Winston, New York

    Google Scholar 

  • de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    PubMed  Google Scholar 

  • de Mesa MC, Jimenez-Bermudez S, Pliego-Alfaro F, Quesada MA, Mercado JA (2000) Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Aust J Plant Physiol 27:1093–1100

    Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation of efflux. Plant Physiol 125:2059–2067

    PubMed  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG Jr (2000) Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814–822

    CAS  Google Scholar 

  • Deng Z, Huang S, Ling P, Yu C, Weber CA (2001) Cloning and characterization of NBS-LRR class resistance gene candidate sequences in citrus. Theor Appl Genet 101:814–822

    Google Scholar 

  • Dhekney SA, Litz RE, Moraga DA, Yadav AK (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (Cbf) genes. In Vitro Cell Dev Biol-Plant 43:195–202

    CAS  Google Scholar 

  • Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009) Using endogenous Vitis genes to produce disease resistant transgenic grapevines. In Vitro Cell Dev Biol-Plant 45:S38–S38

    Google Scholar 

  • Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    CAS  Google Scholar 

  • Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L (2002a) Regeneration of transgenic citrus plants under non selective conditions results in high frequency recovery of plants with silenced transgenes. Mol Genet Genom 267:544–556

    CAS  Google Scholar 

  • Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L (2002b) Constitutive expression of untranslatable versions of the p25 coat protein gene in Mexican lime (Citrus aurantifolia (Christm.) Swing.) transgenic plants does not confer resistance to Citrus tristeza virus (CTV). In: Duran-Vila N, Milne RG, Da Graca JV (eds) Proceedings of the 15th conference of the international organization of citrus virologists. University of California, Riverside, pp 341–344

    Google Scholar 

  • Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2002c) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christm.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    CAS  Google Scholar 

  • Dugdale B, Beetham PR, Becker DK, Harding RM, Dale JL (1998) Promoter activity associated with the intergenic regions of banana bunchy top virus DNA-1 to -6 in transgenic tobacco and banana cells. J Gen Virol 79:2301–2311

    PubMed  CAS  Google Scholar 

  • Dugdale B, Becker DK, Beetham PR, Harding RM, Dale JL (2000) Promoters derived from banana bunchy top virus DNA-1 to -5 direct vascular-associated expression in transgenic banana (Musa spp.). Plant Cell Rep 19:810–814

    CAS  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430

    CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Lett 400:168–172

    PubMed  CAS  Google Scholar 

  • Espinosa P, Lorenzo JC, Iglesias A, Yabor L, Menendez E, Borroto J, Hernandez L, Arencibia AD (2002) Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep 21:136–140

    CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    PubMed  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutive expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    CAS  Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504

    PubMed  CAS  Google Scholar 

  • Febres VJ, Niblett CL, Lee RF, Moore GA (2003) Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep 21:421–428

    PubMed  CAS  Google Scholar 

  • Ferguson AR, Seal AG (2008) Kiwifruit. In: Hancock JF (ed) Temperate fruit crop breeding. Springer, New York, pp 235–263

    Google Scholar 

  • Finstad K, Martin RR (1995) Transformation of strawberry for virus resistance. Acta Hortic 385:86–90

    Google Scholar 

  • Firoozabady E, Gutterson N (1998) Genetically transformed pineapple plants and methods for their production. International Patent Application No. PCT/US98?03681

    Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tissue Organ Cult 84:1–16

    Google Scholar 

  • Fitch MMM (2002) Transgenic papayas in Hawaii-a useful tool for new cultivar development and clonal propagation. In: Khachatourians T, McHughen A, Scorza R, Nip WK (eds) Transgenic plants and crops. Marcel Dekker Publishers, New York, pp 437–448

    Google Scholar 

  • Fitch MMM (2005) Carica papaya Papaya. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford Oxon, pp 174–207

    Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    CAS  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus domestica Borkh.). Plant Breed 126:137–145

    CAS  Google Scholar 

  • Flachowsky H, Peil A, Rollins J, Hanke M-V, Richter K, Lee DH (2008a) Improved fire blight resistance in transgenic apple lines by constitutive overexpression of the mbr4 gene of Malus baccata. Acta Hortic 793:287–291

    CAS  Google Scholar 

  • Flachowsky H, Richter K, Kim WS, Geider K, Hanke MV (2008b) Transgenic expression of a viral EPS-depolymerase is potentially useful to induce fire blight resistance in apple. Ann Appl Biol 153:345–355

    CAS  Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    CAS  Google Scholar 

  • Fleming GH, Olivares-Fuster O, Fatta Del-Bosco S, Grosser JW (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev Biol-Plant 36:450–455

    CAS  Google Scholar 

  • Foucault C, Letouze R (1987) In vitro regeneration from excised petiole segments and from flower buds. Biol Plant 29:409–414

    Google Scholar 

  • Fraser LG, Kent J, Harvey CF (1995) Transformation studies of Actinidia chinensis Planch. N Z J Crop Hort Sci 23:407–413

    Google Scholar 

  • Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662

    PubMed  CAS  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    CAS  Google Scholar 

  • Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    CAS  Google Scholar 

  • Geier T, Eimert K, Scherer R, Nickel C (2008) Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri  ×  V. rupestris). Plant Cell Tissue Organ Cult 94:269–280

    Google Scholar 

  • Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Eng/Biotechnol 107:113–132

    CAS  Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Google Scholar 

  • Ghorbel R, Dominguez A, Navarro L, Peña L (2000) High efficiency genetic transformation of sour orange (Citrus aurantium) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol 20:1183–1189

    PubMed  Google Scholar 

  • Ghorbel R, La-Malfa S, Lopez MM, Petit A, Navarro L, Peña L (2001) Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiol Mol Plant Pathol 58:103–110

    CAS  Google Scholar 

  • Gómez-Lim MA (1993) Mango fruit ripening: physiology and molecular biology. Acta Hortic 341:484–499

    Google Scholar 

  • Good X, Kellogg JA, Wagoner W, Langhoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol 26:781–790

    PubMed  CAS  Google Scholar 

  • Graham J (2005) Fragaria strawberry. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford Oxon, pp 456–474

    Google Scholar 

  • Graham J, McNicol RJ, Greig K (1995) Towards genetic based insect resistance in strawberry using the cowpea trypsin inhibitor gene. Ann Appl Biol 127:163–173

    CAS  Google Scholar 

  • Graham J, Gordon SC, McNicol RJ (1997) The effect of the CpTi gene in strawberry against attack by vine weevil (Otiorhynchus sulcatus f. Coleoptera: Curculionidae). Ann Appl Biol 131:133–139

    Google Scholar 

  • Graham M, Ko L, Hardy V, Robinson S, Sawyer B, O’Hare T, Jobin M, Dahler J, Underhill S, Smith M (2000) The development of blackheart resistant pineapples through genetic engineering. Acta Hortic 529:133–136

    CAS  Google Scholar 

  • Graham J, Gordon SC, Smith K, McNicol RJ, McNicol JW (2002) The effect of the Cowpea trypsin inhibitor in strawberry on damage by vine weevil under field conditions. J Hort Sci Biotechnol 77:33–40

    CAS  Google Scholar 

  • Gray DJ, Li ZT, Dhekney SA, Hopkins DL, Zimmerman TW (2009) Green genetic engineering technology: rearrangement of endogenous functional genetic elements to create improved grapevines. In Vitro Cell Dev Biol-Plant 45:S39–S39

    Google Scholar 

  • Grosser JW, Gmitter FG Jr, Orbovic V, Moore GA, Graham JH, Soneji J, Gonzalez-Ramos J, Mirkov TE, Kayim M (2009) Grapefruit. In: Hall TC, Kole C (eds) Transgenic tropical and subtropical fruits and nuts. Wiley Blackwell, Chichester, pp 63–76

    Google Scholar 

  • Guo WW, Duan YX, Olivares-Fuster O, Wu ZC, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24:482–486

    PubMed  CAS  Google Scholar 

  • Gutierrez-E MA, Luth D, Moore GA (1997) Factors affecting the Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 18:271–278

    Google Scholar 

  • Gutiérrez-Pesce P, Rugini E (2008) Kiwifruit. In: Kole C, Hall TH (eds) Transgenic tropical and subtropical fruits and nuts. Wiley Blackwell, Chichester, pp 185–211

    Google Scholar 

  • Hall RM, Drew RA, Higgins CM, Dietzgen RG (2000) Efficient organogenesis of an Australian passionfruit hybrid (Passiflora edulis x Passiflora edulis var. flavicarpa) suitable for gene delivery. Aust J Bot 48:673–680

    Google Scholar 

  • Hammerschlag FA, Smigocki AC (1998) Growth and in vitro propagation of peach plants transformed with the shooty mutant strain of Agrobacterium tumefaciens. HortScience 33:897–899

    Google Scholar 

  • Han ML, Gleave AP, Wang TC (2010) Efficient transformation of Actinidia arguta by reducing the strength of basal salts in the medium to alleviate callus browning. Plant Biotechnol Rep 4:129–138

    Google Scholar 

  • Hanke V, Düring K, Norelli JL, Aldwinckle HS (1999) Transformation of apple cultivars with t4-lysozyme-gene to increase fire blight resistance. Acta Hortic 489:253–256

    CAS  Google Scholar 

  • He LX, Ban Y, Inoue H, Matsuda N, Liu JH, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    PubMed  CAS  Google Scholar 

  • Herrera Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    CAS  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Kato A, Oshima M, Motoyoshi F (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J Breed 40:199–207

    Google Scholar 

  • Holefors A, Xue ZT, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci 136:69–78

    CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    PubMed  CAS  Google Scholar 

  • Hughes JA, Brown LR, Ferro AJ (1987) Nucleotide sequence and analysis of the coliphage T3S-adenosylmethionine hydrolase gene and its surrounding ribonuclease III processing sites. Nucleic Acid Res 15:717–729

    PubMed  CAS  Google Scholar 

  • Husaini AM (2010) Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29:97–110

    PubMed  CAS  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria  ×  ananassa Duch.) plants tolerant to salt stress. Plant Sci 174:446–455

    CAS  Google Scholar 

  • Igarashi M, Ogasawara H, Hatsuyama Y, Saito A, Suzuki M (2002) Introduction of rolC into Marubakaidou (Malus prunifolia Borkh. Var. ringo Asami Mo 84-A) apple rootstock via Agrobacterium tumefaciens. Plant Sci 163:463–473

    CAS  Google Scholar 

  • Isidron PM, Benega GR, Cisneros PA, Arias VE, Lorenzo FJC, Espinosa AP, Borroto NCG (1998) Application of biotechnological and traditional methods in Cuban pineapple breeding program. In: Proceedings of the third international pineapple symposium, Pattaya, p 45 (Abstract)

    Google Scholar 

  • Iwanami T, Shimizu T, Ito T, Hirabayashi T (2004) Tolerance to citrus mosaic virus in transgenic trifoliate orange lines harbouring capsid polyprotein gene. Plant Dis 88:865–868

    CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan MW (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–661

    CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ (1990) Agrobacterium mediated transformation of the cultivated strawberry (Fragaria × ananassa Duch.) using disarmed binary vectors. Plant Sci 69:79–94

    CAS  Google Scholar 

  • Janssen B-J, Gardner RC (1993) The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Rep 13:28–31

    CAS  Google Scholar 

  • Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, Mliki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tissue Organ Cult 97:187–196

    CAS  Google Scholar 

  • Jelenkovic G, Chin CK, Billings S (1986) Transformation studies of Fragaria  ×  ananassa by Ti-plasmids of Agrobacterium tumefaciens. HortScience 21:695 (Abstract)

    Google Scholar 

  • Jiménez-Bermúdez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a Pectate lyase gene. Plant Physiol 128:751–759

    PubMed  Google Scholar 

  • Jin WM, Dong J, Hu YL, Lin ZP, Xu XF, Han ZH (2009) Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription Factors AtDREB1b. HortScience 44:35–39

    Google Scholar 

  • Jones OP, Waller BJ, Beech MG (1988) The production of strawberry plants from callus cultures. Plant Cell Tissue Organ Cult 12:235–241

    Google Scholar 

  • Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y (1994) A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.). Plant Cell Rep 13:541–545

    CAS  Google Scholar 

  • Ko HL, Campbell PR, Jobin-Decor MP, Eccleston KL, Graham MW, Smith MK (2006) The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microparticle bombardment. Euphytica 150:387–395

    CAS  Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet 64:91–97

    Google Scholar 

  • Kobayashi S, Nakamura Y, Kaneyoshi J, Higo H, Higo K (1996) Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J Jpn Soc Hort Sci 64:763–769

    CAS  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    CAS  Google Scholar 

  • Koltunow AM, Brennan P, Protopsaltis S, Nito N (2000) Regeneration of West Indian limes (Citrus aurantifolia) containing genes for decreased seed set. Acta Hortic 535:81–91

    CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hort Sci 131:74–81

    CAS  Google Scholar 

  • Kramer MG, Kellogg J, Wagoner W, Matsumura W, Good X, Peters S, Clough G, Bestwick RK (1997) Reduced ethylene synthesis and ripening control in tomatoes expressing S-adenosylmethionine hydrolase. In: Kannelis AK, Chang C, Kende H, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer Academic Publishers, Dordrecht, pp 307–319

    Google Scholar 

  • Krens FA, Pelgrom KTB, Schaart JG, den Nijs APM, Rouwendal GJA (2004) Clean vector technology for marker-free transgenic fruit crops. Acta Hortic 663:431–435

    CAS  Google Scholar 

  • Kumar BBS, Ganapathi tr, Revathi CJ, Srinvas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    PubMed  CAS  Google Scholar 

  • Lai C, Yu T, Yeh S, Yang J (2002) Non-cryogenic, long-term preservation of in vitro multiple bud clusters of papaya. International Association of Plant Tissue Culture and Biotechnology, Orlando, p 104A (Abstracts)

    Google Scholar 

  • Landi L, Capocasa F, Costantini E, Mezzetti B (2009) ROLC strawberry plant adaptability, ­productivity, and tolerance to soil-borne disease and mycorrhizal interactions. Transgenic Res 18:933–942

    PubMed  CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2003) Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiol 23:1209–1215

    PubMed  CAS  Google Scholar 

  • Ling K, Namba S, Consalves C, Slightom JL, Gonsalves D (1991) Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Biotechnology 9:752–758

    PubMed  CAS  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agriculture improvement. World J Microbiol Biotechnol 11:416–425

    Google Scholar 

  • Litz RE, Efendi D, Raharjo SHT, Padilla G, Moon PA (2007) Genetic transformation of avocado with S-adenosylmethionine hydrolase (samase) and evaluation of transformants after three years. In: Proceedings VI world Avocado congress CD, 1c-24, 10 p

    Google Scholar 

  • Liu ZR, Sanford JC (1988) Plant regeneration by organogenesis from strawberry leaf and runner tissue. HortScience 23:1057–1059

    Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Lius S, Manshardt RM, Fitch MMM, Slightom JL, Sanford JC, Gonsalves G (1997) Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol Breed 3:161–168

    Google Scholar 

  • Luth D, Moore G (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Cult 57:219–222

    CAS  Google Scholar 

  • Machado MLD, Machado AD, Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B, Katinger H (1992) Regeneration of transgenic plant of Prunus armenaica containing the coat protein gene of plum pox virus. Plant Cell Rep 11:25–29

    Google Scholar 

  • Magdalita PM, Laurena AC, Yabut-Perez BM, Mendoza EMT, Villegas VN, Botella JR (2002) Progress in the development of transgenic papaya: Transformation of Solo papaya using ACC synthase antisense construct. Acta Hortic 575:171–176

    CAS  Google Scholar 

  • Malnoy M, Faize M, Venisse JS, Geider K, Chevreau E (2005a) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:632–638

    PubMed  CAS  Google Scholar 

  • Malnoy M, Venisse JS, Brisset MN, Chevreau E (2005b) Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Mol Breed 12:231–244

    Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus  ×  domestica. Mol Plant Microbe Interact 20:1568–1580

    PubMed  CAS  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    PubMed  CAS  Google Scholar 

  • Manders G, Otoni WC, d’Utra Vaz FB, Davey MR, Power JB (1994) Transformation of passion fruit (Passiflora edulis f. flavicarpa Degener) using Agrobacterium tumefaciens. Plant Cell Rep 13:234–238

    Google Scholar 

  • Mathews H, Litz RE, Wilde DH, Merkel S, Wetzstein HY (1992) Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos. In Vitro Cell Dev Biol-Plant 28:172–178

    Google Scholar 

  • Mathews H, Litz RE, Wilde HD, Wetzstein HY (1993) Genetic transformation of mango. Acta Hortic 341:93–97

    Google Scholar 

  • Mathews H, Wagoner W, Kellogg J, Bestwick R (1995) Genetic transformation of strawberry: stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell Dev Biol-Plant 31:36–43

    CAS  Google Scholar 

  • Matsuta N, Iketani H, Hayashi T (1993) Transformation in grape and kiwifruit. In: Hayashi T, Omura M, Scott NS (eds) Techniques on gene diagnosis and breeding in fruit trees. Fruit Tree Research Station, Tsukuba, pp 184–192

    Google Scholar 

  • Mauro MC, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    CAS  Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13:486–492

    CAS  Google Scholar 

  • McCafferty HR, Zhu J, Moore P (2003) Towards improved insect resistance in papaya. Plant Biol 2003:58 (Abstract)

    Google Scholar 

  • McCafferty HR, Moore P, Zhu YJ (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgen Res 15:337–347

    CAS  Google Scholar 

  • McCafferty HR, Moore P, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175:385–393

    CAS  Google Scholar 

  • Mercado JA, Martin-Pizarro C, Pascual L, de los Santos B, Romero F, Quesada MA, Pliego-Alfaro F, Galvez J, Rey M, de la Vina G, Llobell A, Yubero-Serrano EM, Munoz-Blanco J, Caballero JL (2007) Evaluation of tolerance of Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Hortic 738:383–388

    CAS  Google Scholar 

  • Messina R, Vischi M, Marchetti S, Testolin R, Milani N (1990) Observations on subdioeciousness and fertilisation in a kiwifruit breeding program. Acta Hortic 282:377–386

    Google Scholar 

  • Mezzetti B, Costantini E, Chionchetti F, Landi L, Pandolfini T, Spena A (2004) Genetic transformation in strawberry and raspberry for improving plant productivity and fruit quality. Acta Hortic 649:107–110

    Google Scholar 

  • Molinari HBC, Marur CJ, Bespalhok JCF, Kobayashi AK, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    CAS  Google Scholar 

  • Monteiro M (2005) Genetic transformation of yellow passion fruit to confer resistance to Xanthomonas axonopodis pv. Passiflorae (in Portuguese). Ph.D. dissertation, Escola Superior de Agricultura “Luis de Queiroz”, Universidade de Sao Paulo, Piracicaba, SP, Brazil

    Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of citrus stem sections and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    CAS  Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1993) Transformation in citrus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 23: Plant protoplasts and genetic engineering IV. Springer, Berlin, pp 194–208

    Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, de Bondt A (1996) Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16:245–249

    CAS  Google Scholar 

  • Nagel AK, Schnabel G, Petri C, Scorza R (2008) Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein. HortScience 43:1514–1521

    Google Scholar 

  • Nagel AK, Kalariya H, Schnabel G (2010) The Gastrodia antifungal protein (GAFP-1) and its transcript are absent from scions of chimeric-grafted plum. HortScience 45:188–192

    Google Scholar 

  • Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M (1999) Expression of soybean beta-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep 18:527–532

    CAS  Google Scholar 

  • Nan G-L, Nagai C, Moore PH, Sun SSM, Sipes BS, Paull RE, Rohrbach K (1996) Tissue culture and genetic transformation studies on pineapple. In Vitro Cell Dev Biol-Plant 32:102A (Abstract)

    Google Scholar 

  • Nehra NS, Stushnoff C, Kartha KK (1989) Direct shoot regeneration from strawberry leaf disks. J Am Soc Hort Sci 114:1014–1018

    Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990a) Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep 9:293–298

    CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990b) Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants. Plant Cell Rep 9:10–13

    CAS  Google Scholar 

  • Neupane KR (1997) Genetic engineering of papaya (Carica papaya L.) for modified ethylene biosynthesis. Unpublished Ph.D. dissertation, University of Hawaii, Honolulu, Hawaii, 173 p

    Google Scholar 

  • Neupane KR, Mukatira UT, Kato C, Stiles JI (1997) Cloning and characterization of fruit-expressed ACC synthase and ACC oxidase from papaya. International symposium on biotechnology of tropical and subtropical species, Brisbane, Australia, 29 Sept–3 Oct 1997, p 73 (Abstract)

    Google Scholar 

  • Niedz RP, Sussman MR, Satterlee JS (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep 14:403–406

    CAS  Google Scholar 

  • Noiton D, Shelbourne CJA (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219

    Google Scholar 

  • Norelli JL, Aldwinckle HS, Destefano-Beltran L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    CAS  Google Scholar 

  • Norelli JL, Borejsza-Wysocka E, Momol MT, Mills JZ, Grethel A, Aldwinckle HS, Ko K, Brown SK, Bauer DW, Beer SV, Abdul-Kader AM, Hanke V (1999) Genetic transformation for fire blight resistance in apple. Acta Hortic 489:295–296

    Google Scholar 

  • Nyman M, Wallin A (1992) Improved culture techniques for strawberry (Fragaria × ananassa Duch.) protoplasts and the determination of DNA content in protoplast derived plants. Plant Cell Tissue Organ Cult 30:127–133

    CAS  Google Scholar 

  • Oliveira MM, Barroso J, Pais MS (1991) Direct gene transfer into Actinidia deliciosa protoplasts: analysis of transient expression of the CAT gene using TLC autoradiography and a GC-MS-based method. Plant Mol Biol 17:235–242

    PubMed  CAS  Google Scholar 

  • Park JI, Lee YK, Chung WI, Lee IH, Choi JH, Lee WM, Ezura H, Lee SP, Kim IJ (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP-glucose pyrophosphorylase. Mol Breed 17:269–279

    CAS  Google Scholar 

  • Pawlicki-Jullian N, Sedira M, Welander M (2002) The use of Agrobacterium rhizogenes transformed roots to obtain transgenic shoots of the apple rootstock Jork 9. Plant Cell Tissue Organ Cult 70:163–171

    CAS  Google Scholar 

  • Peña L, Cervera M, Juarez J, Ortega C, Pina JA, Duran-Vila N, Navarro L (1995a) High-efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Google Scholar 

  • Peña L, Cevera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L (1995b) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    Google Scholar 

  • Peña L, Cevera M, Juarez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 17:731–737

    Google Scholar 

  • Peña L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY and APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    PubMed  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Fischer M (2009) In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: temperate species. Springer, New York, pp 33–81

    Google Scholar 

  • Perez-Molphe-Balch E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep 17:591–596

    CAS  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26

    PubMed  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324

    PubMed  CAS  Google Scholar 

  • Qin Y, Zhang S (2007) Factors influencing the efficiency of Agrobacterium-mediated transformation in strawberry cultivar Toyonoka. J Nucl Agric Sci 21:461–465 (in Chinese with English abstract)

    Google Scholar 

  • Qin Y, Teixeira da Silva JA, Zhang L, Zhang S (2008) Transgenic strawberry: state of the art for improved traits. Biotechnol Adv 26:219–232

    PubMed  CAS  Google Scholar 

  • Raharjo S, Witjaksono,. Efendi D, Gomez-Lim MA, Suarez I, Litz RE (2003) Genetic transformation of avocado. In: Proceedings V Congreso Mundial de Aguacate, vol II, pp115–118

    Google Scholar 

  • Raharjo SHT, Witjaksono, Padilla G, Litz RE (2008) Recovery of avocado (Persea americana Mill.) plants transformed with the antifungal plant defensin gene pdf1.2. In Vitro Cell Dev Biol-Plant 44:254–262

    CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828

    PubMed  CAS  Google Scholar 

  • Raquel MH, Oliveira MM (1996) Kiwifruit leaf competent for plant regeneration and direct DNA transfer. Plant Sci 121:107–114

    CAS  Google Scholar 

  • Reynoird JP, Mourgues F, Norelli J, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31

    CAS  Google Scholar 

  • Rohrbach KG, Christopher D, Hu J, Paull R, Sipes B, Nagai C, Moore P, McPherson M, Atkinson H, Levesley A, Oda C, Fleisch H, McLean M (2000) Management of a multiple goal pineapple genetic engineering program. Acta Hortic 529:111–113

    Google Scholar 

  • Rugini E, Pellegrineschi A, Jacobini A, Mariotti D, Mencuccini M (1989) Trasformazione genetica dell’Actinidia (Actinidia deliciosa A. Chev.) mediante geni “Root inducing” di Agrobacterium rhizogenes. In: Proceedings of the Società Italiana di Genetica Agraria, Alghero, Italy, 23–26 Oct, p 147

    Google Scholar 

  • Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D (1991) Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep 10:291–295

    CAS  Google Scholar 

  • Rugini E, Muganu M, Pilotti M, Balestra GM, Varvaro L, Magro P, Bressan R, Taratufolo C (1999) Genetic stability, transgene hereditability and agronomic evaluation of transgenic kiwi (Actinidia deliciosa A. Chev.) plants for rolABC, rolB and osmotin gene. In: Fourth international symposium on kiwifruit, Santiago de Chile, 11–14 Feb 1999, pp 26 (Abstract)

    Google Scholar 

  • Ruhmann S, Treutter D, Fritsche S, Briviba K, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54:4633–4640

    PubMed  Google Scholar 

  • Sagi L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp, cv Bluggoe, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep 13:262–266

    CAS  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, Desmet K, Swennen R, Cammue BPA (1995) Genetic transformation of banana and plantain (Musa spp) via particle bombardment. Biotechnology 13:481–485

    PubMed  CAS  Google Scholar 

  • Santiago-Domenech N, Jimenez-Bemudez S, Matas AJ, Rose JKC, Munoz-Blanco J, Mercado JA, Quesada MA (2008) Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. J Exp Bot 59:2769–2779

    PubMed  CAS  Google Scholar 

  • Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Funchs M, Dunez J, Gonsalves D (1994) Transgenic plum (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep 14:18–22

    CAS  Google Scholar 

  • Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10:201–209

    PubMed  CAS  Google Scholar 

  • Shuxiang T, Shufan J (1995) Detection and observation on the bud mutation of Actinidia chinensis Planch. Acta Hortic 403:71–73

    Google Scholar 

  • Silva MB (1998) Agrobacterium tumefaciens-mediated transformation of the yellow passionfruit (Passiflora edulis f. flavicarpa Degener). M.Sc. thesis, Universidade Federal de Viçosa, Viçosa, MG, Brazil

    Google Scholar 

  • Song GQ, Sink KC (2006) Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus  ×  P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep 25:117–123

    PubMed  CAS  Google Scholar 

  • Soriano JM, Joshi SG, van Kaauwen M, Noordijk Y, Groenwold R, Henken B, van de Weg WE, Schouten HJ (2009) Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet Genom 5:475–482

    Google Scholar 

  • Sripaoraya S, Keawsompong S, Insupa P, Davey MR, Power JB, Srinives P (2006a) Evaluation of transgene stability, gene expression and herbicide tolerance of genetically modified pineapple under field conditions. Acta Hortic 702:37–40

    CAS  Google Scholar 

  • Sripaoraya S, Keawsompong S, Insupa P, Davey MR, Power JB, Srinives P (2006b) Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed 125:411–413

    CAS  Google Scholar 

  • Stewart RJ, Sawyer BJB, Bucheli CS, Robinson SP (2001) Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust J Plant Physiol 28:181–191

    CAS  Google Scholar 

  • Sugaya T, Yano M, Sun H-J, Hirai T, Ezura H (2008) Transgenic strawberry expressing the taste-modifying protein miraculin. Plant Biotechnol 25:329–333

    CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schonherr J, Jacobsen HJ, Kiesecher H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    PubMed  CAS  Google Scholar 

  • Szankowski I, Waidmann S, Degenhardt J, Patocchi A, Paris R, Silfverberg-Dilworth E, Broggini G, Gessler C (2009) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genom 5:349–358

    Google Scholar 

  • Takahashi EHK (2002) Transference of the attacin A gene to yellow passion fruit (Passiflora edulis Sims. F. flavicarpa Deg.) via biolistics (in Portuguese). M.Sc. thesis, Escola Superior de Agricultura “Luis de Queiroz”, Universidade de Sao Paulo, Piracicaba, SP, Brazil

    Google Scholar 

  • Tennant PF (1996) Evaluation of the resistance of coat protein transgenic papaya against papaya ringspot potyvirus isolates and development of transgenic papaya for Jamaica. Unpublished Ph.D. dissertation, Cornell University, Ithaca, NY, 318 pp

    Google Scholar 

  • Tennant PF, Gonsalves C, Ling KS, Fitch M, Manshardt R, Slightom J, Gonsalves D (1994) Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84:1359–1366

    Google Scholar 

  • Tennant PF, Fermin G, Fitch MM, Manshardt RM, Slightom JL, Gonsalves D (2001) Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development and coat protein homology. Eur J Plant Pathol 107:645–653

    CAS  Google Scholar 

  • Teo G, Suzuki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847

    PubMed  CAS  Google Scholar 

  • Thompson JM, Zimmerman RH, Vanderzwet T (1975) Inheritance of fire blight resistance in Pyrus.1. Dominant gene, SE, causing sensitivity. J Hered 66:259–264

    Google Scholar 

  • Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meletti LMM, Rezende JAM (2006) Resistance to passionfruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Dis 90:1026–1030

    CAS  Google Scholar 

  • Trusov Y, Botella JR (2006) Delayed flowering in pineapples (Ananas comosus (L.) Merr.) caused by co-suppression of the ACACS2 gene. Acta Hortic 702:29–36

    CAS  Google Scholar 

  • Uematsu C, Murase M, Ichikawa H, Imamura J (1991) Agrobacterium-mediated transformation and regeneration of kiwi fruit. Plant Cell Rep 10:286–290

    CAS  Google Scholar 

  • Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: characterization and reaction to virus infection upon protoplast electroporation. Plant Sci 170:739–747

    CAS  Google Scholar 

  • Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci 69:199–206

    CAS  Google Scholar 

  • Vellicce GR, Ricci JCD, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    PubMed  CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260

    PubMed  CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69–82

    PubMed  CAS  Google Scholar 

  • Vieira MLC, Takahashi EK, Falco MC, Vieira LG, Pereira LFP (2002) Direct gene transfer to passion fruit (Passiflora edulis) with the attacin A gene. In: Proceedings of the 10th international association for plant tissue culture and biotechnology congress, Orlando, p 103-A (Abstract)

    Google Scholar 

  • Wang DY, Wergin WP, Zimmerman RH (1984) Somatic embryogenesis and plant regeneration from immature embryos of strawberry. HortScience 19:71–72

    Google Scholar 

  • Wang JL, Ge HB, Peng SQ, Zhang HM, Chen PL, Xu JR (2004) Transformation of strawberry (Fragaria ananassa Duch.) with late embryogenesis abundant protein gene. J Hort Sci Biotechnol 79:735–738

    CAS  Google Scholar 

  • Wang TC, Ran YD, Atkinson RG, Gleave AP, Cohen D (2006) Transformation of Actinidia eriantha: a potential species for functional genomics studies in Actinidia. Plant Cell Rep 25:425–431

    PubMed  CAS  Google Scholar 

  • Wawrzynczak D, Michalczuk L, Sowik W (2005) Modification in indole-3-acetic acid metabolism, growth and development of strawberry through transformation with maize 1AA-glucose synthase gene (iaglu). Acta Physiol Plant 27:19–27

    CAS  Google Scholar 

  • Welander M, Pawlicki N, Holefors A, Wilson F (1998) Genetic transformation of the apple rootstock M26 with the rolB gene and its influence on rooting. J Plant Physiol 153:371–380

    CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    PubMed  CAS  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    CAS  Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Hsaio WLW, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by overproduction of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci 161:969–977

    CAS  Google Scholar 

  • Yabor L, Arzola M, Aaragon C, Hernandez M, Arencibia A, Lorenzo JC (2006) Biochemical side effects of genetic transformation of pineapple. Plant Cell Tissue Organ Cult 86:63–67

    CAS  Google Scholar 

  • Yamakawa Y, Chen L-H (1996) Agrobacterium rhizogenes -mediated transformation of kiwifruit (Actinidia deliciosa) by direct formation of adventitious buds. J Jpn Soc Hort Sci 64: 741–747

    Google Scholar 

  • Yamashita H, Daimon H, Akasaka-Kennedy Y, Masuda T (2004) Plant regeneration from hairy roots of apple rootstock, Malus prunifolia Borkh. var. ringo Asami, strain Nagano no. 1, transformed by Agrobacterium rhizogenes. J Jpn Soc Hortic Sci 73:505–510

    CAS  Google Scholar 

  • Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep 19:1203–1211

    CAS  Google Scholar 

  • Yao J-L, Wu J-H, Gleave AP, Morris BAM (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci 113:175–183

    CAS  Google Scholar 

  • Yao J-L, Dong YH, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    PubMed  CAS  Google Scholar 

  • Yazawa M, Suginuma C, Ichikawa K, Kamada H, Akihama T (1995) Regeneration of transgenic plants from hairy root of kiwi fruit (Actinidia deliciosa) induced by Agrobacterium rhizogenes. Breed Sci 45:241–244

    Google Scholar 

  • Yeh S-D, Bau H-J (2001) Characterization of a distinct pathotype of leaf-distortion mosaic virus capable of breaking the transgenic resistance of papaya conferred by the coat protein gene of Papaya ringspot virus. In: The second international symposium on biotechnology of tropical and subtropical species, Taipei, Taiwan, 5–9 Nov 2001, p 21 (Abstract)

    Google Scholar 

  • Yeh S-D, Bau H-J, Cheng Y, Yu T, Yang J (1998) Greenhouse and field evaluations of coat-protein transgenic papaya resistant to papaya ringspot virus. Acta Hortic 461:321–328

    Google Scholar 

  • Ying ZT, Yu X, Davis MJ (1999) New method for obtaining transgenic papaya plants by Agrobacterium-mediated transformation of somatic embryos. Proc Florida State Hortic Soc 112:201–205

    Google Scholar 

  • Youssef SM, Jimenez-Bermudez S, Bellido ML, Martin-Pizarro C, Barcelo M, Abdal-Aziz SA, Caballero JL, Lopez-Aranda JM, Pliego-Alfaro F, Munoz J, Quesada MA, Mercado JA (2009) Fruit yield and quality of strawberry plants transformed with a fruit specific strawberry pectate lyase gene. Sci Hortic 119:120–125

    CAS  Google Scholar 

  • Yu C, Huang S, Chen C, Deng Z, Ling P, Gmitter FG (2002) Factors affecting Agrobacterium-mediated transformation of sweet orange and citrange. Plant Cell Tissue Organ Cult 71:147–155

    CAS  Google Scholar 

  • Zhang Z, Sun AJ, Cong Y, Sheng BC, Yao QH, Cheng ZM (2006) Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the rolC gene. In Vitro Cell Dev Biol-Plant 42:491–497

    CAS  Google Scholar 

  • Zhu YJ, Fitch MMM, Moore PH (1999) Improving fungal disease resistance in papaya. In Vitro Cell Dev Biol-Plant 35:63-A (Abstract)

    Google Scholar 

  • Zhu LH, Ahlman A, Li XY, Welander M (2001a) Integration of the rolA gene in the genome of the vigorous apple rootstock A2 reduced plant height and shortened internodes. J Hortic Sci Biotechnol 76:758–763

    CAS  Google Scholar 

  • Zhu LH, Holefors A, Ahlman A, Xue Z-T, Welander M (2001b) Transformation of the apple rootstock M.9/29 with the rol B gene and its influence on rooting and growth. Plant Sci 160:433–439

    PubMed  CAS  Google Scholar 

  • Zhu YJ, Tang CS, Fitch M, Moore P (2001c) Transformation with a pathogen inducible stilbene synthase gene for increased fungal resistance in papaya. In Vitro Cell Dev Biol-Plant 37(26-A) (Abstract)

    Google Scholar 

  • Zhu YJ, Tang CS, Fitch M, Moore P (2001d) Increased fungal resistance in papaya by transformation of a pathogen-inducible stilbene synthase gene. In: Second international symposium on biotechnology of tropical and subtropical species, Taipei, Taiwan, 5–9 Nov 2001, p 22 (Abstract)

    Google Scholar 

  • Zhu YJ, Tang CS, Ferreira S, Fitch M, Moore P (2002) Genetic improvement of Carica papaya for disease resistance. In: 10th international association of plant tissue culture and biotechnology congress, plant biotechnology 2002 and beyond, Orlando, FL, 23–28 June 2002, Addendum booklet, p 2 (Abstract)

    Google Scholar 

  • Zhu YJ, Tang CS, Ferreira S, Fitch M, Moore P (2003a) Genetic improvement of Carica papaya for disease resistance. Proc Int Congr Plant Pathol 2(P12.3):169 (Abstract)

    Google Scholar 

  • Zhu YJ, Tang CS, Moore P (2003b) Metabolic engineering of phytoalexins from the Vitaceae improves antifungal activity in a tropical plant. In Vitro Cell Dev Biol-Plant 39:24-A (Abstract)

    Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore P (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, McCafferty H, Albert H, Moore P (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432

    PubMed  Google Scholar 

  • Zhu YJ, Agbayani R, Moore P (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    PubMed  CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Litz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Litz, R.E., Padilla, G. (2012). Genetic Transformation of Fruit Trees. In: Schnell, R., Priyadarshan, P. (eds) Genomics of Tree Crops. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0920-5_5

Download citation