Interference Microscopy

  • David D. Nolte
Part of the Bioanalysis book series (BIOANALYSIS, volume 1)


Many biological targets of interest are highly translucent, such as cells and tissues, with light transport lengths of many tens of microns up to hundreds of microns. Therefore, in microscopy of surface-supported cells and thin tissue culture, the optical contrast tends to be very low. On the other hand, cells and tissues have spatially nonuniform refractive indices and spatially varying geometries that lead to optical path length differences with phase that wraps around 2π several times. These large phase deviations provide the basis for phase contrast approaches to microscopic imaging. This may be accomplished in many different ways, including interference microscopy, differential interference contrast (DIC), and holography.


Optical Coherence Tomography Gaussian Beam Differential Interference Contrast Reference Wave Quarter Wave Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goodman, J.W.: Introduction to Fourier Optics. Roberts, Englewood (2004)Google Scholar
  2. 2.
    Popescu, G., Deflores, L.P., Vaughan, J.C., Badizadegan, K., Iwai, H., Dasari, R.R., Feld, M.S.: Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29(21), 2503–2505 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    Allersma, M.W., Gittes, F., deCastro, M.J., Stewart, R.J., Schmidt, C.F.: Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys. J. 74(2), 1074–1085 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Pralle, A., Prummer, M., Florin, E.L., Stelzer, E.H.K., Horber, J.K.H.: Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44(5), 378–386 (1999)CrossRefGoogle Scholar
  5. 5.
    Denk, W., Webb, W.W.: Optical measurement of picometer displacements of transparent microscopic objects. Appl. Opt. 29(16), 2382–2391 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448), 721–727 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Weber, I.: Reflection interference contrast microscopy. Biophotonics Pt B Methods Enzymol. 361, 34–47 (2003)CrossRefGoogle Scholar
  8. 8.
    Limozin, L., Sengupta, K.: Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chemphyschem 10(16), 2752–2768 (2009)CrossRefGoogle Scholar
  9. 9.
    Zilker, A., Engelhardt, H., Sackmann, E.: Dynamic reflection interference contrast (Ric-) microscopy – a new method to study surface excitations of cells and to measure membrane bending elastic-moduli. J. Phys. 48(12), 2139–2151 (1987)CrossRefGoogle Scholar
  10. 10.
    Monzel, C., Fenz, S.F., Merkel, R., Sengupta, K.: Probing biomembrane dynamics by dual-wavelength reflection interference contrast microscopy. Chemphyschem 10(16), 2828–2838 (2009)CrossRefGoogle Scholar
  11. 11.
    Braun, D., Fromherz, P.: Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon. Appl. Phys. A Mater. 65(4–5), 341–348 (1997)ADSGoogle Scholar
  12. 12.
    Lambacher, A., Fromherz, P.: Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes. J. Opt. Soc. Am. B Opt. Phys. 19(6), 1435–1453 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Marki, I., Bocchio, N.L., Geissbuehler, S., Aguet, F., Bilenca, A., Lasser, T.: Three-dimensional nano-localization of single fluorescent emitters. Opt. Express 18(19), 20263–20272 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Wax, A., Yang, C.H., Backman, V., Badizadegan, K., Boone, C.W., Dasari, R.R., Feld, M.S.: Cellular organization and substructure measured using angle-resolved low-coherence interferometry. Biophys. J. 82(4), 2256–2264 (2002)CrossRefGoogle Scholar
  15. 15.
    Pyhtila, J.W., Graf, R.N., Wax, A.: Determining nuclear morphology using an improved angle-resolved low coherence interferometry system. Opt. Express 11(25), 3473–3484 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Dubois, A., Grieve, K., Moneron, G., Lecaque, R., Vabre, L., Boccara, C.: Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43(14), 2874–2883 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Schnars, U., Juptner, W.P.O.: Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13(9), R85–R101 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C., Magistretti, P.J.: Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13(23), 9361–9373 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Su, T.W., Isikman, S.O., Bishara, W., Tseng, D., Erlinger, A., Ozcan, A.: Multi-angle lensless digital holography for depth resolved imaging on a chip. Opt. Express 18(9), 9690–9711 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Seo, S., Isikman, S.O., Sencan, I., Mudanyali, O., Su, T.W., Bishara, W., Erlinger, A., Ozcan, A.: High-throughput lens-free blood analysis on a chip. Anal. Chem. 82(11), 4621–4627 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David D. Nolte
    • 1
  1. 1.Department of PhysicsPurdue UniversityWest LafayetteUSA

Personalised recommendations