Skip to main content

Enhanced Optical Transmission Through Annular Aperture Arrays: Role of the Plasmonic Guided Modes

  • Chapter
  • First Online:
Book cover Reviews in Plasmonics 2010

Part of the book series: Reviews in Plasmonics ((RIP,volume 2010))

  • 1730 Accesses

Abstract

Let us recall what the enhanced or extraordinary optical transmission (EOT) is. This phraseology was firstly used by T. W. Ebbesen’s team in 1998 to qualify the far-field light transmission obtained through an array of cylindrical apertures engraved into an opaque metallic film [1–5]. It was noticed that the normalized measured transmission per aperture is very large compared to the transmission of a single aperture. Thus, the collective response of the whole structure is at the origin of this extraordinary effect. Nevertheless, this phenomenon becomes more usual for holes of big diameters compared to the illumination wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T.  Thio, and P.A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. 391:667–669, February 1998.

    Google Scholar 

  2. T.J. Kim, T.  Thio, T.W. Ebbesen, D.E. Grupp, and H.J. Lezec. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt. Lett., 24:256–258, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. T.  Thio, H.F. Ghaemi, H.J. Lezec, P.A. Wolf, and T.W. Ebessen. Surface-plamon-enhanced transmission through hole arrays in Cr films. J. Opt. Soc. Am. B, 16(10):1743–1748, October 1999.

    Article  CAS  Google Scholar 

  4. D.  E. Grupp, H.  J. Lezec, T.  W. Ebbesen, K.  M. Pellerin, and Tineke Thioa. Crucial role of metal surface in enhanced transmission through subwavelength apertures. Appl. Phys. Lett., 77(11):1569–1571, 2000.

    CAS  Google Scholar 

  5. Tineke Thio, H.J. Lezec, and T.W. Ebbesen. Strongly enhanced optical transmission through subwavelength holes in metal films. Physica B, 279:90–93, 2000.

    Article  CAS  Google Scholar 

  6. U.  Schröter and D.  Heitmann. Surface-plasmon enhanced transmission through metallic gratings. Phys. Rev. B, 58:15419–15421, 1998.

    Article  Google Scholar 

  7. H.F. Ghaemi, T.Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec. Surface plasmons enhance optical transmission through sub-wavelength holes. Phys. Rev. B, 58:6779–6782, 1998.

    Article  CAS  Google Scholar 

  8. J.A. Porto, F.T. Garcia-Vidal, and J.B. Pendry. Transmission resonances on metallic gratings with narrow slits. Phys. Rev. Lett., 83:2845–2848, 1999.

    Article  CAS  Google Scholar 

  9. A.  Krishnan, T.  Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J.  Pendry, L.  Martin-Moreno, and F.J. Garcia-Vidal. Evanescently coupled resonance in surface plasmon enhanced transmission. Optics Commun., 200:1–7, 2001.

    Article  CAS  Google Scholar 

  10. M.  Sarrazin, J.P. Vigneron, and J.M. Vigoureux. Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B, 67:085415, 2003.

    Article  Google Scholar 

  11. T.  Lopez-Rioz, D.  Mendoza, F.J. Garcia-Vidal, J.  Sanchez-Dehesa, and B.  Pannetier. Surface shape resonances in lamellar metallic gratings. Phys. Rev. Lett., 81:665–668, 1998.

    Article  Google Scholar 

  12. Ph. Lalanne, J.P. Hugonin, S.  Astilean, M.  Palamaru, and K.D. Möller. One-mode model and airy-like formulae for one-dimensional metallic gratings. J. Opt. A: Pure Appl. Opt., 2:48–51, 2000.

    Article  Google Scholar 

  13. S.  Astilean, Ph. Lalanne, and M.  Palamaru. Light transmission through metallic channels much smaller than the wavelength. Optics Commun., 175:265–273, 2000.

    Article  CAS  Google Scholar 

  14. E.  Popov, M.  Nevière, S.  Enoch, and R.  Reinisch. Theory of light transmission through ­subwavelength periodic hole arrays. Phys. Rev. B, 62:16100–16108, 2000.

    Article  CAS  Google Scholar 

  15. L.  Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T.  Thio, J.B. Pendry, and T.W. Ebbesen. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett., 86(6):1114–1116, February 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Laurent Salomon, Frédéric Grillot, Anatoly V. Zayats, and Frédérique de Fornel. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys. Rev. Lett., 86(6):1110–1113, 2001.

    Google Scholar 

  17. J.M. Vigoureux. Analysis of the Ebbesen experiments in the light of evanescent short range diffraction. Optics Commun., 198:257–263, 2001.

    Article  CAS  Google Scholar 

  18. T.-K. Wu and S.-W. Lee. Multiple frequency selective surface with multiring patch elements. 42:1484–1490, 1994.

    Google Scholar 

  19. C.  Winnewisser, F.  Lewen, J.  Weinzierl, and H.  Helm. Transmission features of frequency–selective components in the far field determined by terahertz time–domain spectroscopy. Appl. Opt., 38(18):3961–3967, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Garcia de Abajo. Light scattering by particles and hole arrays. Reviews of Modern Physics, 79:1267, 2007.

    Google Scholar 

  21. Peter B. Catrysse and Shanhui Fan. Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission. Journal of Nanophotonics, 2:021790, 2008.

    Google Scholar 

  22. R.  Gordon, A.G. Brolo, D.  Sinton, and K.L. Kavanagh. Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser & Photon. Rev., 4:311, 2010.

    Article  CAS  Google Scholar 

  23. F.I. Baida and D.  Van Labeke. Light transmission by subwavelength annular aperture arrays in metallic films. Optics Commun., 209:17–22, August 2002.

    Article  CAS  Google Scholar 

  24. F.I. Baida and D.  Van Labeke. Three-dimensional structures for enhanced transmission trough a metallic film: Annular aperture arrays. Phys. Rev. B, 67(155314):1–7, 2003.

    Google Scholar 

  25. F.  I. Baida. Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the tem mode. Applied Phys. B, 89(2–3):145–149, 2007. Rapid Communication.

    Google Scholar 

  26. A.  Moreau, G.  Granet, F.  I. Baida, and D.  Van Labeke. Light transmission by subwavelength square coaxial aperture arrays in metallic films. Opt. Express, 11(10):1131–1136, May 2003.

    Article  PubMed  CAS  Google Scholar 

  27. F.I. Baida, Y.  Poujet, B.  Guizal, and D.  Van Labeke. New design for enhanced transmission and polarization control through near-field optical microscopy probes. Optics Commun., 256: 190–195, 2005.

    Article  CAS  Google Scholar 

  28. Michael I. Haftel, Carl Schlockermann, and Girsh Blumberg. Role of cylindrical surface plasmons in enhanced transmission. Appl. Phys. Lett., 88:193104, 2006.

    Google Scholar 

  29. S.  M. Orbons, M.  I. Haftel, C.  Schlockermann, D.  Freeman, M.  Milicevic, T.  J. Davis, B.  Luther-Davies, D.  N. Jamieson, and A.  Roberts. Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays. Opt. Lett., 33:821–823, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. F.  I. Baida, Y.  Poujet, J.  Salvi, D.  Van Labeke, and B.  Guizal. Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays. Optics Commun., 282:14631466, 2009.

    Article  Google Scholar 

  31. A.  Roberts and R.  C. McPhedran. Bandpass grids with annular apertures. IEEE Trans. Antennas Propag., 36:607–611, 1988.

    Article  Google Scholar 

  32. W.  J. Fan, S.  Zhang, B.  Minhas, K.J. Malloy, and S.R.J. Brueck. Enhanced infrared transmission through subwavelength coaxial metallic arrays. Phys. Rev. Lett., 94(33902):1–4, January 2005.

    Google Scholar 

  33. W.  Fan, S.  Zhang, K.  J. Malloy, and S.  R.  J. Brueck. Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays. Opt. Eng., 13(12):4406–4413, June 2005.

    Google Scholar 

  34. Matthew J. Lockyear, Alastair P. Hibbins, and J.  Roy Sambles. Microwave transmission through a single subwavelength annular aperture in a metal plate. Phys. Rev. Lett., 94:193902, 2006.

    Google Scholar 

  35. H.  Caglayan, I.  Bulu, and E.  Ozbay. Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture. Opt. Eng., 13:1666, 2005.

    Google Scholar 

  36. J.  Salvi, M.  Roussey, F.  I. Baida, M.-P. Bernal, A.  Mussot, T.  Sylvestre, H.  Maillotte, D.  Van Labeke, A.  Perentes, I.  Utke, C.  Sandu, P.  Hoffmann, and B.  Dwir. Annular aperture arrays: Study in the visible region of the electromagnetic spectrum. Opt. Lett., 30(13):1611–1613, July 2005.

    Article  PubMed  CAS  Google Scholar 

  37. W.  Fan, S.  Zhang, K.  J. Malloy, and S.  R.  J. Brueck. Large-area, infrared nanophotonic materials fabricated using interferometric lithography. J. Vac. Sci. Technol. B, 23:2700, 2005.

    Article  CAS  Google Scholar 

  38. H.  Caglayan, I.  Bulu, and E.  Ozbay. Plasmonic structures with extraordinary transmission and highly directional beaming properties. Microwave and Optical Technology Letters, 48:2491, 2006.

    Article  Google Scholar 

  39. Wenjun Fan, Shuang Zhang, N.-C. Panoiu, A.  Abdenour, S.  Krishna, R.  M. Osgood, K.  J. Malloy, and S.  R.  J. Brueck. Second harmonic generation from a nanopatterned isotropic nonlinear material. 6(5):1027–1030, 2006.

    Google Scholar 

  40. A.J. Gallant, J.A. Levitt, M.  Kaliteevski, D.  Wood, M.C. Petty, R.A. Abram, S.  Brand, and J.M. Chamberlain. Enhanced thz transmission through micromachined sub-wavelength annular apertures. IET Seminar on MEMS Sensors and Actuators, 2006(11367):169–175, 2006.

    Article  Google Scholar 

  41. Yannick Poujet, Jérôme Salvi, and Fadi Issam Baida. 90% extraordinary optical transmission in the visible range through annular aperture metallic arrays. Opt. Lett., 32(20):2942–2944, 2007.

    Google Scholar 

  42. Hongfeng Gai, Jia Wang, Qian Tian, Wei Xia, and Xiangang Xu. Experimental investigation of the performance of an annular aperture and a circular aperture on the same very-small-aperture laser facet. Appl. Opt., 46(25):6449–6453, 2007.

    Google Scholar 

  43. C.  K. Chang, D.  Z. Lin, Y.  C. Chang, M.  W. Lin, J.  T. Yeh, J.  M. Liu, C.  S. Yeh, and C.  K. Lee. Enhancing intensity of emitted light from a ring by incorporating a circular groove. Opt. Express, 15(23):15029–15034, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. A.-A. Yanik X. Wang, S.  Erramilli, M.-K. Hong, and H.  Altug. Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Appl. Phys. Lett., 93:081104, 2008.

    Article  Google Scholar 

  45. M.  J. Kofke, D.  H. Waldeck, Z.  Fakhraai, S.  Ip, and G.  C. Walker. The effect of periodicity on the extraordinary optical transmission of annular aperture arrays. Appl. Phys. Lett., 94:023104, 2009.

    Article  Google Scholar 

  46. C.M. Rollinson, S.M. Orbons, S.T. Huntington, B.C. Gibson, J.  Canning, J.D. Love, A.  Roberts, and D.N. Jamieson. Metal-free scanning optical microscopy with a fractal fiber probe. Opt. Eng., 17(3):1772–1780, 2009.

    CAS  Google Scholar 

  47. E.  Verhagen, L.  Kuipers, and A.  Polman. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence. Opt. Eng., 17:14586, 2009.

    CAS  Google Scholar 

  48. Yuh-Yan Yu, Ding-Zheng Lin, Long-Sun Huang, and Chih-Kung Lee. Effect of subwavelength annular aperture diameter on the nondiffracting region of generated bessel beams. Opt. Eng., 17(4):2707–2713, 2009.

    Google Scholar 

  49. Tsung-Dar Cheng, Ding-Zheng Lin, Jyi-Tyan Yeh, Jonq-Min Liu, Chau-Shioung Yeh, and Chih-Kung Lee. Propagation characteristics of silver and tungsten subwavelength annular aperture generated sub-micron non-diffraction beams. Opt. Express, 17(7):5330–5339, 2009.

    Google Scholar 

  50. Ahmet Ali Yanik, Ronen Adato, Shyamsunder Erramilli, and Hatice Altug. Hybridized nanocavities as single-polarized?plasmonic antennas. Opt. Express, 17(23):20900–20910, 2009.

    Google Scholar 

  51. Feng Wang, Min Xiao, Kai Sun, and Qi-Huo Wei. Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in ag films. Opt. Express, 18(1):63–71, 2010.

    Google Scholar 

  52. C.  R. Williams, M.  Misra, S.  R. Andrews, S.  A. Maier, S.  Carretero-Palacios, S.  G. Rodrigo, F.  J. Garcia-Vidal, and L.  Martin-Moreno. Dual band terahertz waveguiding on a planar metal surface patterned with annular holes. Appl. Phys. Lett., 96:011101, 2010.

    Article  Google Scholar 

  53. P.B. Catrysse and Shanhui Fan. Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry. Appl. Phys. Lett., 94:231111, 2009.

    Google Scholar 

  54. D.  B. Davidson and R.  W. Ziolkowski. Body–of–revolution finite–difference time–domain modeling of space–time focusing by a three–dimensional lens. J. Opt. Soc. Am. A, 11(4):1471–1490, April 1994.

    Article  Google Scholar 

  55. A.  Taflove and S.  C. Hagness. Computational Electrodynamics, the Finite-Difference Time–Domain Method. Artech House, Norwood, MA, second edition, 2005.

    Google Scholar 

  56. F.  I. Baida, D.  Van Labeke, and Y.  Pagani. Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes. Optics Communications, 255:241–252, 2003.

    Article  Google Scholar 

  57. C.T. Chan, Q.L. Yu, and K.M. Ho. Order-n spectral method for electromagnetic waves. Phys. Rev. B, 51(23):16635–16642, June 1995.

    Article  CAS  Google Scholar 

  58. F.I. Baida, D.  Van Labeke, G.  Granet, A.  Moreau, and A.  Belkhir. Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands. 79:1–8, 2004.

    Google Scholar 

  59. F.  I. Baida, A.  Belkhir, D.  Van Labeke, and O.  Lamrous. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Phys. Rev. B, 74:205419, 2006.

    Article  Google Scholar 

  60. Michael I. Haftel, Carl Schlockermann, and G.  Blumberg. Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons. Phys. Rev. B, 74:235405, 2006.

    Google Scholar 

  61. R.  de Waele, S.  P. Burgos, A.  Polman, and H.  A. Atwater. Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. Nano Lett., 9:2832–2837, 2009.

    Article  PubMed  Google Scholar 

  62. E.H. Barakat, M.-P. Bernal, and F.  I. Baida. Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate. Optics Express, 18:6530, 2010.

    Article  PubMed  CAS  Google Scholar 

  63. D.  Van Labeke, D.  Gérard, B.  Guizal, F.  I. Baida, and L.  Li. An angle-independent frequency selective surface in the optical range. Opt. Express, 14(25):11945–11951, 2006.

    Article  PubMed  Google Scholar 

  64. A.  Belkhir and F.  I. Baida. Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome. Phys. Rev. E, 77:056701, 2008.

    Article  CAS  Google Scholar 

  65. J.  Seidel, F.  I. Baida, L.  Bischoff, B.  Guizal, S.  Grafstrom, D.  Van Labeke, and L.  M. Eng. Coupling between surface plasmon modes on metal films. Phys. Rev. B, 69:121405, 2004.

    Article  Google Scholar 

  66. A.  Perentes, I.  Utke, B.  Dwir, M.  Leutenegger, T.  Lasser, P.  Hoffmann, F.  Baida, M.-P. Bernal, M.  Roussey, J.  Salvi, and D.  Van Labeke. Fabrication of arrays of sub-wavelength nano-­apertures in an optically thick gold layer on glass slides for optical studies. Nanotechnology, 16:S273–S277, 2005.

    Article  CAS  Google Scholar 

  67. S.M. Orbons, D.  Freeman, B.  Luther-Davies, B.C. Gibsonc, S.T. Huntingtonc, D.N. Jamiesona, and A.  Roberts. Optical properties of silver composite metamaterials. physica B, 394:176–179, 2007.

    CAS  Google Scholar 

  68. Y.  Poujet, M.  Roussey, J.  Salvi, F.I. Baida, D.  Van Labeke, A.  Perentes, C.  Santschi, and P.  Hoffmann. Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range. Photon. Nanostruct., 4:47–53, 2006.

    Article  Google Scholar 

  69. D.  Courjon, J.-M. Vigoureux, M.  Spajer, K.  Sarayeddine, and S.  Leblanc. External and internal reflection near field microscopy: experiment and results. Appl. Opt., 29:3734–3740, 1990.

    Article  PubMed  CAS  Google Scholar 

  70. D.  Van Labeke and D.  Barchiesi. Probes for scanning tunneling optical microscopy: A theorical comparison. J. Opt. Soc. Am. A, 10(10):2193–2201, October 1993.

    Article  Google Scholar 

  71. T.  Grosjean and D.  Courjon. Polarization filtering induced by imaging systems: Effect on image structure. Phys. Rev. E, 67(4):046611, Apr 2003.

    Google Scholar 

  72. J.  Bravo-Abad, F.J. García-Vidal, and L.  Martín-Moreno. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys. Rev. Lett., 93:227401, 2004.

    Article  PubMed  CAS  Google Scholar 

  73. C.  Genet and T.  W. Ebbesen. Light in tiny holes. Nature, 445:39–46, 2007.

    CAS  Google Scholar 

  74. T.  Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, and T.W. Ebbesen. Enhanced light transmission through a single subwavelength aperture. Opt. Lett., 26(24):1972–1974, December 2001.

    Article  PubMed  CAS  Google Scholar 

  75. Y.  Wang, K.  Kempa, B.  Kimball, J.  B. Carlson, G.  Benham, W.  Z. Li, T.  Kempa, J.  Rybczynski, A.  Herczynski, and Z.  F. Ren. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett., 85:2607, 2004.

    Article  CAS  Google Scholar 

  76. J.  Rybczynski, K.  Kempa, A.  Herczynski, Y.  Wang, M.  J. Neughton, Z.  F. Ren, Z.  P. Huang, D.  Cai, and M.  Giersig. Subwavelength waveguide for visible light. Appl. Phys. Lett., 90:021104, 2007.

    Article  Google Scholar 

  77. T.  Thio. Coaxing light into small spaces. Nature Nanotechnology, 2:136–138, 2007.

    Article  PubMed  CAS  Google Scholar 

  78. A.  Roberts. Beam transmission through hole arrays. Opt. Express, 18(3):2528–2533, 2010.

    Article  PubMed  CAS  Google Scholar 

  79. X.  Wang Y.  Peng and K.  Kempa. Tem-like optical mode of a coaxial nanowaveguide. Opt. Eng., 16(3):1758–1763, 2008.

    Google Scholar 

  80. K.  Kempa, X.  Wang, Z.  F. Ren, and M.  J. Naughton. Discretely guided electromagnetic effective medium. Appl. Phys. Lett., 92:043114, 2008.

    Article  Google Scholar 

  81. Jun Wang, Wei Zhou, and Er-Ping Li. Enhancing the light transmission of plasmonic metamaterials through polygonal aperture arrays. Opt. Express, 17(22):20349–20354, 2009.

    Google Scholar 

  82. F.  J. Rodríguez-Fortuño, C.  García-Meca, R.  Ortuño, J.  Martí, and A.  Martínez. Coaxial plasmonic waveguide array as a negative-index metamaterial. Opt. Lett., 34(21):3325–3327, 2009.

    Article  PubMed  Google Scholar 

  83. Zhu Wei-Ren, Zhao Xiao-Peng, Bao Shi, and Zhang Yan-Ping. Highly symmetric planar metamaterial absorbers based on annular and circular patches. Chinese Physics Letters, 27(1):014204, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Baida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baida, F., Salvi, J. (2012). Enhanced Optical Transmission Through Annular Aperture Arrays: Role of the Plasmonic Guided Modes. In: Geddes, C. (eds) Reviews in Plasmonics 2010. Reviews in Plasmonics, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0884-0_9

Download citation

Publish with us

Policies and ethics