Skip to main content

Optical Properties and Applications of Shape-Controlled Metal Nanostructures

  • Chapter
  • First Online:
Reviews in Plasmonics 2010

Part of the book series: Reviews in Plasmonics ((RIP,volume 2010))

Abstract

Noble metallic materials in the nanoscale size regime display unique optical and electronic properties. In this chapter, we review current synthetic methods for making gold and silver nanostructures of various shapes and sizes and discuss select techniques that have become indispensible for structural characterization of nanomaterials. A fundamental characteristic of metal nanostructures is their interaction with light through surface plasmon resonance (SPR), which can be modulated by shape, surrounding environment, and size. We first address the effect of shape on the SPR and then discuss changes in the extinction spectrum that result from plasmonic coupling between metal nanostructures in close proximity. Changes in the refractive index of media surrounding the nanoparticles and the corresponding effect on the SPR are briefly addressed. We then highlight several applications of metal nanostructures that utilize their unique optical properties, including SPR as a technique for detection, surface-enhanced Raman scattering (SERS), photothermal ablation therapy (PTA), drug delivery, and solar energy conversion. We conclude with a discussion of current challenges and promising research directions in the study and use of metal nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Z. Cummins, S. J. Williams (1983) Light and Color in Nature and Art, John Wiley and Sons.

    Google Scholar 

  2. M. Faraday, (1857), On the color of colloidal gold, Phil. Trans. R. Soc. London. 147, 145–181.

    Article  Google Scholar 

  3. M. Faraday, (1857), The Bakerian lecture: experimental relations of gold (and other metals) to light, Philosophical Transactions of the Royal Society of London. 147, 145–181.

    Article  Google Scholar 

  4. G. Mie, (1908), Optical Properties of Colloidal Gold Solutions, Ann. Phys. 25, 329.

    Google Scholar 

  5. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, (2003), The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B. 107, 668–677.

    Article  CAS  Google Scholar 

  6. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, (2006), Synthesis, Characterization, and Tunable Optical Properties of Hollow Gold Nanospheres†, J. Phys. Chem. B. 110, 19935–19944.

    Article  PubMed  CAS  Google Scholar 

  7. B. P. Rand, P. Peumans, S. R. Forrest, (2004), Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters, Journal Of Applied Physics. 96, 7519–7526.

    Article  CAS  Google Scholar 

  8. T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda, (2009), Supported gold nanoparticle catalyst for the selective oxidation of silanes to silanols in water, Chemical Communications. 5302–5304.

    Google Scholar 

  9. H. Hartshorn, C. J. Pursell, B. D. Chandler, (2009), Adsorption of CO on Supported Gold Nanoparticle Catalysts: A Comparative Study, Journal Of Physical Chemistry C. 113, 10718–10725.

    Article  CAS  Google Scholar 

  10. T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa, K. Kaneda, (2009), Supported silver nanoparticle catalyst for selective hydration of nitriles to amides in water, Chemical Communications. 3258–3260.

    Google Scholar 

  11. L. Guczi, G. Peto, A. Beck, K. Frey, O. Geszti, G. Molnar, C. Daroczi, (2003), Gold nanoparticles deposited on SiO2/Si(100): Correlation between size, electron structure, and activity in CO oxidation, Journal Of The American Chemical Society. 125, 4332–4337.

    Article  PubMed  CAS  Google Scholar 

  12. J. R. Adleman, D. A. Boyd, D. G. Goodwin, D. Psaltis, (2009), Heterogenous Catalysis Mediated by Plasmon Heating, Nano Letters. 9, 4417–4423.

    Article  PubMed  CAS  Google Scholar 

  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, (1999), Ultrasensitive chemical analysis by Raman spectroscopy, Chem. Rev. 99, 2957–2976.

    Article  PubMed  CAS  Google Scholar 

  14. C. D. Geddes, J. R. Lakowicz, (2002), Metal-enhanced fluorescence, Journal Of Fluorescence. 12, 121–129.

    Article  Google Scholar 

  15. C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, P. Hankins, (2008), Chemical sensing and imaging with metallic nanorods, Chemical Communications. 2008, 544–557.

    Article  CAS  Google Scholar 

  16. W. S. Chang, J. W. Ha, L. S. Slaughter, S. Link, (2010), Plasmonic nanorod absorbers as orientation sensors, Proceedings Of The National Academy Of Sciences Of The United States Of America. 107, 2781–2786.

    Article  PubMed  CAS  Google Scholar 

  17. W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, C. Li, (2009), Targeted Photothermal Ablation of Murine Melanomas with Melanocyte-Stimulating Hormone Analog–Conjugated Hollow Gold Nanospheres, Clinical Cancer Research. 15, 876.

    Article  PubMed  CAS  Google Scholar 

  18. M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, C. Li, (2008), In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy, Molecular cancer therapeutics. 7, 1730.

    Article  PubMed  CAS  Google Scholar 

  19. J. Turkevitch, P. C. Stevenson, (1951), Hillier,“A study on the nucleation and growth processes in the synthesis of colloidal gold”, J. Discuss. Faraday Soc. 11, 55–75.

    Article  Google Scholar 

  20. G. Frens, (1973), Controlled nucleation for the regulation of the particle size in monodisperse gold solutions, Nat. Phys. Sci. 241, 20–22.

    CAS  Google Scholar 

  21. C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, (2005), Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105, 1025–1102.

    Article  PubMed  CAS  Google Scholar 

  22. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely, (1995), Synthesis And Reactions Of Functionalized Gold Nanoparticles, Journal Of The Chemical Society-Chemical Communications. 1655–1656.

    Google Scholar 

  23. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, (1994), Synthesis Of Thiol-Derivatized Gold Nanoparticles In A 2-Phase Liquid-Liquid System, Journal Of The Chemical Society-Chemical Communications. 801–802.

    Google Scholar 

  24. D. V. Leff, P. C. Ohara, J. R. Heath, W. M. Gelbart, (1995), Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory, The Journal of Physical Chemistry. 99, 7036.

    Article  CAS  Google Scholar 

  25. K. Sun, J. Qiu, J. Liu, Y. Miao, (2009), Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles, Journal of Materials Science. 44, 754–758.

    Article  CAS  Google Scholar 

  26. A. B. Smetana, J. S. Wang, J. Boeckl, G. J. Brown, C. M. Wai, (2007), Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis, Langmuir. 23, 10429–10432.

    Article  PubMed  CAS  Google Scholar 

  27. A. P. Herrera, O. Resto, J. G. Briano, C. Rinaldi, (2005), Synthesis and agglomeration of gold nanoparticles in reverse micelles, Nanotechnology. 16, S618–S625.

    Article  PubMed  CAS  Google Scholar 

  28. P. C. Lee, D. Meisel, (1982), Adsorption and surface-enhanced Raman of dyes on silver and gold sols, The Journal of Physical Chemistry. 86, 3391.

    Article  CAS  Google Scholar 

  29. J. E. Millstone, S. J. Hurst, G. S. Metraux, J. I. Cutler, C. A. Mirkin, (2009), Colloidal Gold and Silver Triangular Nanoprisms, Small. 5, 646–664.

    Article  PubMed  CAS  Google Scholar 

  30. W. Benjamin, S. Yugang, M. Brian, X. Younan, (2005), Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver, Chemistry - A European Journal. 11, 454–463.

    Article  CAS  Google Scholar 

  31. Y. Sun, B. Mayers, T. Herricks, Y. Xia, (2003), Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence, Nano Letters. 3, 955–960.

    Article  CAS  Google Scholar 

  32. Y. G. Sun, Y. N. Xia, (2002), Shape-controlled synthesis of gold and silver nanoparticles, Science. 298, 2176–2179.

    Article  PubMed  CAS  Google Scholar 

  33. B. J. Wiley, Y. J. Xiong, Z. Y. Li, Y. D. Yin, Y. A. Xia, (2006), Right bipyramids of silver: A new shape derived from single twinned seeds, Nano Letters. 6, 765–768.

    Article  PubMed  CAS  Google Scholar 

  34. Y. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, (2009), Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie-International Edition. 48, 60–103.

    Article  CAS  Google Scholar 

  35. C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, T. Li, (2005), Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications, Journal Of Physical Chemistry B. 109, 13857–13870.

    Article  CAS  Google Scholar 

  36. T. K. Sau, C. J. Murphy, (2004), Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir. 20, 6414–6420.

    Article  PubMed  CAS  Google Scholar 

  37. S. H. Im, Y. T. Lee, B. Wiley, Y. N. Xia, (2005), Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity, Angewandte Chemie-International Edition. 44, 2154–2157.

    Article  CAS  Google Scholar 

  38. F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, (1989), Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles, Solid State Ionics. 32, 198–205.

    Article  Google Scholar 

  39. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, (2002), Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone), Chemistry of Materials. 14, 4736.

    Article  CAS  Google Scholar 

  40. Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia, (2002), Crystalline silver nanowires by soft solution processing, Nano Letters. 2, 165–168.

    Article  CAS  Google Scholar 

  41. S. E. Skrabalak, L. Au, X. D. Li, Y. Xia, (2007), Facile synthesis of Ag nanocubes and Au nanocages, Nature Protocols. 2, 2182–2190.

    Article  PubMed  CAS  Google Scholar 

  42. Y. G. Sun, B. Mayers, Y. N. Xia, (2003), Metal nanostructures with hollow interiors, Advanced Materials. 15, 641–646.

    Article  CAS  Google Scholar 

  43. D. Seo, H. Song, (2009), Asymmetric Hollow Nanorod Formation through a Partial Galvanic Replacement Reaction, Journal Of The American Chemical Society. 131, 18210–18211.

    Google Scholar 

  44. H.-P. Liang, L.-J. Wan, C.-L. Bai, L. Jiang, (2005), Gold Hollow Nanospheres: Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes, The Journal of Physical Chemistry B. 109, 7795.

    Article  PubMed  CAS  Google Scholar 

  45. T. Y. Olson, A. M. Schwartzberg, C. A. Orme, C. E. Talley, B. O’Connell, J. Z. Zhang, (2008), Hollow gold-silver double-shell nanospheres: Structure, optical absorption, and surface-enhanced Raman scattering, Journal Of Physical Chemistry C. 112, 6319–6329.

    Article  CAS  Google Scholar 

  46. D. B. Williams, C. B. Carter (1996) The Transmission Electron Microscope: Basics, Plenum Press, New York.

    Google Scholar 

  47. J. Prikulis, H. Xu, L. Gunnarsson, M. Käll, H. Olin, (2002), Phase-sensitive near-field imaging of metal nanoparticles, Journal of Applied Physics. 92, 6211.

    Article  CAS  Google Scholar 

  48. S. Benrezzak, P. M. Adam, J. L. Bijeon, P. Royer, (2001), Observation of nanometric metallic particles with an apertureless scanning near-field optical microscope, Surface science. 491.

    Google Scholar 

  49. R. Hillenbrand, F. Keilmann, (2001), Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy, Applied Physics B: Lasers and Optics. 73, 239–243.

    CAS  Google Scholar 

  50. P. Russell, D. Batchelor, J. Thornton, (2004), SEM and AFM: complementary techniques for high resolution surface investigations, Veeco Instruments Inc., AN46, Rev A. 1.

    Google Scholar 

  51. H. J. Güntherodt, D. Anselmetti, E. Meyer (1995) Forces in scanning probe methods, Kluwer Academic in cooperation with NATO Scientific Affairs Division.

    Google Scholar 

  52. R. Wiesendanger, H. J. Güntherodt (1993) Scanning tunneling microscopy III: theory of STM and related scanning probe methods, Springer-Verlag.

    Google Scholar 

  53. T. L. Barr (1994) Modern ESCA: The Principles and Practice of X-ray Photoelectron Spectroscopy Vol. 384, CRC Press, New York.

    Google Scholar 

  54. D. C. Koningsberger, R. Prins (1988) X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Wiley-Interscience, New York.

    Google Scholar 

  55. M. A. El-Sayed, (2001), Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res. 34, 257–264.

    Article  PubMed  CAS  Google Scholar 

  56. C. F. Bohren, (1983), How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327.

    Article  CAS  Google Scholar 

  57. M. C. Daniel, D. Astruc, (2004), Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical reviews. 104, 293–346.

    Article  PubMed  CAS  Google Scholar 

  58. J. A. Creighton, D. G. Eadon, (1991), Ultraviolet-visible absorption spectra of the colloidal elements, J Chem Soc Faraday Trans. 87, 3.

    Article  Google Scholar 

  59. J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, L. M. Liz-Marzán, (2006), Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes, Langmuir. 22, 7007.

    Google Scholar 

  60. S. Link, M. A. El-Sayed, (1999), Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B. 103, 4212–4217.

    Article  CAS  Google Scholar 

  61. S. Link, M. A. El-Sayed, (1999), Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, Journal Of Physical Chemistry B. 103, 8410–8426.

    Article  CAS  Google Scholar 

  62. S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, C. R. C. Wang, (1998), The Shape Transition of Gold Nanorods, Langmuir. 15, 701.

    Article  Google Scholar 

  63. Yu, S.-S. Chang, C.-L. Lee, C. R. C. Wang, (1997), Gold Nanorods: Electrochemical Synthesis and Optical Properties, The Journal of Physical Chemistry B. 101, 6661.

    Google Scholar 

  64. S. Link, M. B. Mohamed, M. A. El-Sayed, (1999), Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, Journal Of Physical Chemistry B. 103, 3073–3077.

    Article  CAS  Google Scholar 

  65. A. L. Gonzalez, J. A. Reyes-Esqueda, C. Noguez, (2008), Optical properties of elongated noble metal nanoparticles, Journal Of Physical Chemistry C. 112, 7356–7362.

    Article  CAS  Google Scholar 

  66. C. Pecharroman, J. Perez-Juste, G. Mata-Osoro, L. M. Liz-Marzan, P. Mulvaney, (2008), Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry, Physical Review B. 77.

    Google Scholar 

  67. K.-S. Lee, M. A. El-Sayed, (2006), Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition, The Journal of Physical Chemistry B. 110, 19220.

    Article  PubMed  CAS  Google Scholar 

  68. N. R. Jana, L. Gearheart, S. O. Obare, C. J. Murphy, (2002), Anisotropic chemical reactivity of gold spheroids and nanorods, Langmuir. 18, 922–927.

    Article  CAS  Google Scholar 

  69. K. K. Caswell, J. N. Wilson, U. H. F. Bunz, C. J. Murphy, (2003), Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors, Journal Of The American Chemical Society. 125, 13914–13915.

    Article  PubMed  CAS  Google Scholar 

  70. J. X. Gao, C. M. Bender, C. J. Murphy, (2003), Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution, Langmuir. 19, 9065–9070.

    Article  CAS  Google Scholar 

  71. B. D. Busbee, S. O. Obare, C. J. Murphy, (2003), An improved synthesis of high-aspect-ratio gold nanorods, Advanced Materials. 15, 414–416.

    Google Scholar 

  72. C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, (2002), Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis, Journal Of Materials Chemistry. 12, 1765–1770.

    Article  CAS  Google Scholar 

  73. C. J. Orendorff, P. L. Hankins, C. J. Murphy, (2005), pH-triggered assembly of gold nanorods, Langmuir. 21, 2022–2026.

    Article  PubMed  CAS  Google Scholar 

  74. T. K. Sau, C. J. Murphy, (2004), Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution, Journal Of The American Chemical Society. 126, 8648–8649.

    Article  PubMed  CAS  Google Scholar 

  75. Z. Q. Li, J. Tao, X. M. Lu, Y. M. Zhu, Y. N. Xia, (2008), Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform, Nano Letters. 8, 3052–3055.

    Article  PubMed  CAS  Google Scholar 

  76. B. P. Khanal, E. R. Zubarev, (2008), Purification of high aspect ratio gold nanorods: Complete removal of platelets, Journal Of The American Chemical Society. 130, 12634–12635.

    Google Scholar 

  77. F. Kim, K. Sohn, J. Wu, J. Huang, (2008), Chemical Synthesis of Gold Nanowires in Acidic Solutions, Journal of the American Chemical Society. 130, 14442.

    Article  PubMed  CAS  Google Scholar 

  78. Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, Y. N. Xia, (2002), Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chemistry Of Materials. 14, 4736–4745.

    Article  CAS  Google Scholar 

  79. K. K. Caswell, C. M. Bender, C. J. Murphy, (2003), Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Letters. 3, 667–669.

    Article  CAS  Google Scholar 

  80. N. R. Jana, L. Gearheart, C. J. Murphy, (2001), Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chemical Communications. 617–618.

    Google Scholar 

  81. I. O. Sosa, C. Noguez, R. G. Barrera, (2003), Optical properties of metal nanoparticles with arbitrary shapes, Journal Of Physical Chemistry B. 107, 6269–6275.

    Article  CAS  Google Scholar 

  82. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, (2001), Dramatic localized electromagnetic enhancement in plasmon resonant nanowires, Chemical Physics Letters. 341, 1–6.

    Article  CAS  Google Scholar 

  83. R. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz, (1997), What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? Science. 277, 1078.

    Article  Google Scholar 

  84. S. Y. Lin, C. H. Chen, M. C. Lin, H. F. Hsu, (2005), A cooperative effect of bifunctionalized nanoparticles on recognition: Sensing alkali ions by crown and carboxylate moieties in aqueous media, Analytical Chemistry. 77, 4821–4828.

    Article  PubMed  CAS  Google Scholar 

  85. M. S. H. C. A. M. Jae-Seung Lee, (2007), Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles, Angewandte Chemie International Edition. 46, 4093–4096.

    Article  CAS  Google Scholar 

  86. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, (1997), Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles, Science. 277, 1078.

    Article  PubMed  CAS  Google Scholar 

  87. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, (1998), One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, Journal Of The American Chemical Society. 120, 1959–1964.

    Article  CAS  Google Scholar 

  88. A. N. Shipway, M. Lahav, R. Gabai, I. Willner, (2000), Investigations into the Electrostatically Induced Aggregation of Au Nanoparticlesâ€, Langmuir. 16, 8789.

    Article  CAS  Google Scholar 

  89. T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. L. Cao, F. Bridges, A. Van Buuren, (2002), Near infrared optical absorption of gold nanoparticle aggregates, Journal Of Physical Chemistry B. 106, 7005–7012.

    Article  CAS  Google Scholar 

  90. T. J. Norman, C. D. Grant, A. M. Schwartzberg, J. Z. Zhang, (2005), Structural correlations with shifts in the extended plasma resonance of gold nanoparticle aggregates, Optical Materials. 27, 1197–1203.

    Article  CAS  Google Scholar 

  91. C. D. Grant, A. M. Schwartzberg, T. J. Norman, J. Z. Zhang, (2002), Ultrafast Electronic Relaxation and Coherent Vibrational Oscillation of Strongly Coupled Gold Nanoparticle Aggregates, Journal of the American Chemical Society. 125, 549.

    Article  CAS  Google Scholar 

  92. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, (2003), Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles, Nano Letters. 3, 1087.

    Article  CAS  Google Scholar 

  93. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, (2004), Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible, Nano Letters. 4, 957.

    Article  CAS  Google Scholar 

  94. B. r. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, J. Liphardt, (2005), Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles, Nano Letters. 5, 2246.

    Google Scholar 

  95. P. K. Jain, W. Y. Huang, M. A. El-Sayed, (2007), On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation, Nano Letters. 7, 2080–2088.

    Article  CAS  Google Scholar 

  96. L. Yang, H. Wang, B. Yan, B. r. M. Reinhard, (2009), Calibration of Silver Plasmon Rulers in the 1–25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes, The Journal of Physical Chemistry C. 114, 4901.

    Google Scholar 

  97. C. Graf, A. van Blaaderen, (2001), Metallodielectric Colloidal Core-Shell Particles for Photonic Applications, Langmuir. 18, 524.

    Article  CAS  Google Scholar 

  98. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, (1998), Nanoengineering of optical resonances, Chemical Physics Letters. 288, 243–247.

    Article  CAS  Google Scholar 

  99. Y. G. Sun, Y. N. Xia, (2002), Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes, Analytical Chemistry. 74, 5297–5305.

    Article  PubMed  CAS  Google Scholar 

  100. E. Hao, S. Y. Li, R. C. Bailey, S. L. Zou, G. C. Schatz, J. T. Hupp, (2004), Optical properties of metal nanoshells, Journal Of Physical Chemistry B. 108, 1224–1229.

    Article  CAS  Google Scholar 

  101. N. R. Jana, L. Gearheart, C. J. Murphy, (2001), Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles, Chemistry of Materials. 13, 2313.

    Article  CAS  Google Scholar 

  102. N. R. Jana, L. Gearheart, C. J. Murphy, (2001), Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, Journal Of Physical Chemistry B. 105, 4065–4067.

    Article  CAS  Google Scholar 

  103. S. Kim, S. K. Kim, S. Park, (2009), Bimetallic Gold-Silver Nanorods Produce Multiple Surface Plasmon Bands, Journal Of The American Chemical Society. 131, 8380–8381.

    Google Scholar 

  104. E. Prodan, P. Nordlander, (2003), Structural tunability of the plasmon resonances in metallic nanoshells, Nano Letters. 3, 543–547.

    Article  CAS  Google Scholar 

  105. M. A. Mahmoud, M. A. El-Sayed, (2009), Aggregation of Gold Nanoframes Reduces, Rather Than Enhances, SERS Efficiency Due to the Trade-Off of the Inter- and Intraparticle Plasmonic Fields, Nano Letters. 9, 3025–3031.

    CAS  Google Scholar 

  106. V. Bastys, I. Pastoriza-Santos, B. Rodríguez-González, R. Vaisnoras, L. M. Liz-Marzán, (2006), Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths, Advanced Functional Materials. 16, 766–773.

    Article  CAS  Google Scholar 

  107. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, (2002), Shape effects in plasmon resonance of individual colloidal silver nanoparticles, Journal Of Chemical Physics. 116, 6755–6759.

    Article  CAS  Google Scholar 

  108. T. Ming, W. Feng, Q. Tang, F. Wang, L. Sun, J. Wang, C. Yan, (2009), Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets, Journal of the American Chemical Society. 131, 16350.

    Google Scholar 

  109. P. S. Kumar, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, F. J. Garcia de Abajo, L. M. Liz-Marzan, (2008), High-yield synthesis and optical response of gold nanostars, Nanotechnology. 19.

    Google Scholar 

  110. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, C. A. Mirkin, (2005), Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms, Journal of the American Chemical Society. 127, 5312.

    Article  PubMed  CAS  Google Scholar 

  111. A. L. Gonzalez, C. Noguez, (2007), Influence of morphology on the optical properties of metal nanoparticles, Journal Of Computational And Theoretical Nanoscience. 4, 231–238.

    CAS  Google Scholar 

  112. C. Noguez, (2007), Surface plasmons on metal nanoparticles: The influence of shape and physical environment, Journal Of Physical Chemistry C. 111, 3806–3819.

    Article  CAS  Google Scholar 

  113. J. Rodriguez-Fernandez, C. Novo, V. Myroshnychenko, A. M. Funston, A. Sanchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, F. J. Garcia de Abajo, L. M. Liz-Marzan, P. Mulvaney, (2009), Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra, Journal Of Physical Chemistry C. 113, 18623–18631.

    CAS  Google Scholar 

  114. I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. G. de Abajo, L. M. Liz-Marzan, (2007), Environmental optical sensitivity of gold nanodecahedra, Advanced Functional Materials. 17, 1443–1450.

    Article  CAS  Google Scholar 

  115. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, (2008), Biosensing with plasmonic nanosensors, Nat Mater. 7, 442.

    Article  PubMed  CAS  Google Scholar 

  116. A. J. Haes, S. Zou, G. C. Schatz, R. P. Van Duyne, (2004), Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles, J. Phys. Chem. B. 108, 6961–6968.

    Article  CAS  Google Scholar 

  117. J. J. Mock, D. R. Smith, S. Schultz, (2003), Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Letters. 3, 485–492.

    Article  CAS  Google Scholar 

  118. D. E. Charles, D. Aherne, M. Gara, D. M. Ledwith, Y. K. Gun’ko, J. M. Kelly, W. J. Blau, M. E. Brennan-Fournet, (2010), Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing, ACS Nano. 4, 55–64.

    Article  PubMed  CAS  Google Scholar 

  119. M. Malmqvist, (1993), Biospecific Interaction Analysis Using Biosensor Technology, Nature. 361, 186–187.

    Article  PubMed  CAS  Google Scholar 

  120. A. Madeira, E. Ohman, A. Nilsson, B. Sjogren, P. E. Andren, P. Svenningsson, (2009), Coupling surface plasmon resonance to mass spectrometry to discover novel protein-protein interactions, Nature Protocols. 4, 1023–1037.

    Article  PubMed  CAS  Google Scholar 

  121. C. T. Campbell, G. Kim, (2007), SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics, Biomaterials. 28, 2380–2392.

    Article  PubMed  CAS  Google Scholar 

  122. S. Paul, P. Vadgama, A. K. Ray, (2009), Surface plasmon resonance imaging for biosensing, Iet Nanobiotechnology. 3, 71–80.

    Article  PubMed  CAS  Google Scholar 

  123. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, K. Kurzinger, (2004), Gold nanoshells improve single nanoparticle molecular sensors, Nano Letters. 4, 1853–1857.

    Article  CAS  Google Scholar 

  124. A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, (2005), Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor, Journal Of The American Chemical Society. 127, 2264–2271.

    Article  PubMed  CAS  Google Scholar 

  125. M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, (2001), Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers, Journal of the American Chemical Society. 123, 1471.

    Article  CAS  Google Scholar 

  126. A. B. Dahlin, J. O. Tegenfeldt, F. Hook, (2006), Improving the instrumental resolution of sensors based on localized surface plasmon resonance, Analytical Chemistry. 78, 4416–4423.

    Article  PubMed  CAS  Google Scholar 

  127. C. R. Yonzon, E. Jeoungf, S. L. Zou, G. C. Schatz, M. Mrksich, R. P. Van Duyne, (2004), A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer, Journal Of The American Chemical Society. 126, 12669–12676.

    Article  PubMed  CAS  Google Scholar 

  128. W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, R. P. Van Duyne, (2008), A calcium-modulated plasmonic switch, Journal Of The American Chemical Society. 130, 5836–5837.

    Google Scholar 

  129. C. Wu, Q.-H. Xu, (2009), Stable and Functionable Mesoporous Silica-Coated Gold Nanorods as Sensitive Localized Surface Plasmon Resonance (LSPR) Nanosensors, Langmuir. 25, 9441.

    Article  PubMed  CAS  Google Scholar 

  130. A. D. McFarland, R. P. Van Duyne, (2003), Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Letters. 3, 1057–1062.

    Article  CAS  Google Scholar 

  131. O. L. Muskens, P. Billaud, M. Broyer, N. Fatti, F. Vallee, (2008), Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment, Physical Review B. 78.

    Google Scholar 

  132. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, (1997), Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles, Science. 277, 1078–1081.

    Article  PubMed  CAS  Google Scholar 

  133. B. B. Schrader, D. (1995) Infrared and Raman spectroscopy: methods and applications, VCH: Weinheim, New York.

    Google Scholar 

  134. S. Nie, S. R. Emory, (1997), Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science. 275, 1102.

    Article  PubMed  CAS  Google Scholar 

  135. M. Fleischmann, P. J. Hendra, A. J. McQuillan, (1974), Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters. 26, 163–166.

    Article  CAS  Google Scholar 

  136. D. L. Jeanmaire, R. P. Vanduyne, (1977), Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode, Journal Of Electroanalytical Chemistry. 84, 1–20.

    Article  CAS  Google Scholar 

  137. M. G. Albrecht, J. A. Creighton, (1977), Anomalously Intense Raman-Spectra Of Pyridine At A Silver Electrode, Journal Of The American Chemical Society. 99, 5215–5217.

    Article  CAS  Google Scholar 

  138. Y. Fang, N.-H. Seong, D. D. Dlott, (2008), Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering, Science. 321, 388–392.

    Article  PubMed  CAS  Google Scholar 

  139. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, (1999), Surface-enhanced non-linear Raman scattering at the single-molecule level, Chemical Physics. 247, 155.

    Article  CAS  Google Scholar 

  140. J. T. Krug, G. D. Wang, S. R. Emory, S. Nie, (1999), Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals, Journal of the American Chemical Society. 121, 9208.

    Article  CAS  Google Scholar 

  141. G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, H. Chen, Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers, Journal of the American Chemical Society. 132, 3644.

    Google Scholar 

  142. A. M. Schwartzberg, T. Y. Oshiro, J. Z. Zhang, T. Huser, C. E. Talley, (2006), Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles, Analytical Chemistry. 78, 4732–4736.

    Article  PubMed  CAS  Google Scholar 

  143. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, L. P. Lee, (2004), Nanophotonic Crescent Moon Structures with Sharp Edge for Ultrasensitive Biomolecular Detection by Local Electromagnetic Field Enhancement Effect, Nano Letters. 5, 119.

    Article  CAS  Google Scholar 

  144. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, J. Z. Zhang, (2004), Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate, The Journal of Physical Chemistry B. 108, 19191.

    Article  CAS  Google Scholar 

  145. X. M. Lu, L. Au, J. McLellan, Z. Y. Li, M. Marquez, Y. N. Xia, (2007), Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)(3) or NH4OH, Nano Letters. 7, 1764–1769.

    Article  PubMed  CAS  Google Scholar 

  146. Y. Zhang, C. Gu, A. M. Schwartzberg, J. Z. Zhang, (2005), Surface-enhanced Raman scattering sensor based on D-shaped fiber, Applied Physics Letters. 87.

    Google Scholar 

  147. H. Yan, C. Gua, C. X. Yang, J. Liu, G. F. Jin, J. T. Zhang, L. T. Hou, Y. Yao, (2006), Hollow core photonic crystal fiber surface-enhanced Raman probe, Applied Physics Letters. 89.

    Google Scholar 

  148. C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. W. Chen, J. Z. Zhang, B. Chen, (2008), A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection, Applied Physics Letters. 92.

    Google Scholar 

  149. C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. W. Chen, J. Z. Zhang, (2008), Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering, Applied Physics Letters. 93.

    Google Scholar 

  150. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, (2002), Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers, Science. 297, 1160–1163.

    Article  PubMed  CAS  Google Scholar 

  151. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, (2003), Single metallic nanoparticle imaging for protein detection in cells, Proceedings of the National Academy of Sciences. 100, 11350.

    Google Scholar 

  152. W. A. Zhao, J. M. Karp, (2009), Nanoantennas heat up, Nature Materials. 8, 453–454.

    Article  PubMed  CAS  Google Scholar 

  153. M. R. Jones, J. E. Millstone, D. A. Giljohann, D. S. Seferos, K. L. Young, C. A. Mirkin, (2009), Plasmonically Controlled Nucleic Acid Dehybridization with Gold Nanoprisms, Chemphyschem. 10, 1461–1465.

    Article  PubMed  CAS  Google Scholar 

  154. S. E. Lee, G. L. Liu, F. Kim, L. P. Lee, (2009), Remote optical switch for localized and selective control of gene interference, Nano letters. 9, 562.

    Article  PubMed  CAS  Google Scholar 

  155. G. B. Braun, A. Pallaoro, G. H. Wu, D. Missirlis, J. A. Zasadzinski, M. Tirrell, N. O. Reich, (2009), Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates, ACS Nano. 3, 2007–2015.

    Article  PubMed  CAS  Google Scholar 

  156. D. V. Volodkin, A. G. Skirtach, H. Mohwald, (2009), Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles, Angewandte Chemie-International Edition. 48, 1807–1809.

    Article  CAS  Google Scholar 

  157. T. S. Troutman, S. J. Leung, M. Romanowski, (2009), Light-Induced Content Release from Plasmon-Resonant Liposomes, Advanced Materials. 21, 2334–2338.

    Article  CAS  Google Scholar 

  158. C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, Y. C. Wu, (2006), DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation, Journal Of The American Chemical Society. 128, 3709–3715.

    Article  PubMed  CAS  Google Scholar 

  159. H. Takahashi, Y. Niidome, S. Yamada, (2005), Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light, Chemical communications. 2005, 2247–2249.

    Article  CAS  Google Scholar 

  160. G. H. Wu, A. Milkhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, (2008), Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells, Journal Of The American Chemical Society. 130, 8175–8177.

    Google Scholar 

  161. T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, V. Labhasetwar, (2008), Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats, Molecular Pharmaceutics. 5, 316–327.

    Article  PubMed  CAS  Google Scholar 

  162. L. Qi, X. Gao, (2008), Quantum Dot-Amphipol Nanocomplex for Intracellular Delivery and Realtime Imaging of siRNA, ACS Nano. 2, 1403.

    Article  PubMed  CAS  Google Scholar 

  163. V. P. Torchilin, (2005), Recent advances with liposomes as pharmaceutical carriers, Nature Reviews Drug Discovery. 4, 145–160.

    Article  PubMed  CAS  Google Scholar 

  164. H. Chen, S. Kim, W. He, H. Wang, P. S. Low, K. Park, J. X. Cheng, (2008), Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Forster resonance energy transfer imaging, Langmuir. 24, 5213–5217.

    Article  PubMed  CAS  Google Scholar 

  165. Y. D. Jin, X. H. Gao, (2009), Plasmonic fluorescent quantum dots, Nat. Nanotechnol. 4, 571–576.

    Article  PubMed  CAS  Google Scholar 

  166. Y. Jin, X. Gao, (2009), Spectrally Tunable Leakage-Free Gold Nanocontainers, J. Am. Chem. Soc. 131, 17774–17776.

    Article  PubMed  CAS  Google Scholar 

  167. V. S. Kalambur, E. K. Longmire, J. C. Bischof, (2007), Cellular level loading and heating of superparamagnetic iron oxide nanoparticles, Langmuir. 23, 12329–12336.

    Article  PubMed  CAS  Google Scholar 

  168. A. N. Volkov, C. Sevilla, L. V. Zhigilei, (2007), Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water, Applied Surface Science. 253, 6394–6399.

    Article  CAS  Google Scholar 

  169. A. Fujishima, K. Honda, (1972), Electrochemical Photolysis Of Water At A Semiconductor Electrode, Nature. 238, 37–38.

    Google Scholar 

  170. O. Khaselev, J. A. Turner, (1998), A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science. 280, 425.

    Article  PubMed  CAS  Google Scholar 

  171. T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, (2002), Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, International Journal of Hydrogen Energy. 27, 991–1022.

    Article  CAS  Google Scholar 

  172. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, (2001), Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications, Journal Of The American Chemical Society. 123, 10639–10649.

    Article  PubMed  CAS  Google Scholar 

  173. A. Wolcott, T. R. Kuykendall, W. Chen, S. Chen, J. Z. Zhang, (2006), Synthesis and Characterization of Ultrathin WO3 Nanodisks Utilizing Long-Chain Poly (ethylene glycol)†, J. Phys. Chem. B. 110, 25288–25296.

    Article  PubMed  CAS  Google Scholar 

  174. J. H. Park, S. Kim, A. J. Bard, (2006), Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett. 6, 24–28.

    Article  PubMed  CAS  Google Scholar 

  175. K. S. Ahn, Y. F. Yan, S. H. Lee, T. Deutsch, J. Turner, C. E. Tracy, C. L. Perkins, M. Al-Jassim, (2007), Photoelectrochemical properties of n-incorporated ZnO films deposited by reactive RF magnetron sputtering, Journal Of The Electrochemical Society. 154, B956-B959.

    Article  CAS  Google Scholar 

  176. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao, J. Z. Zhang, (2009), Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays, Small. 5, 104–111.

    Article  PubMed  CAS  Google Scholar 

  177. W. Choi, A. Termin, M. R. Hoffmann, (1994), The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, The Journal of Physical Chemistry. 98, 13669–13679.

    Article  Google Scholar 

  178. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, (2001), Visible-light photocatalysis in nitrogen-doped titanium oxides, Science. 293, 269.

    Article  PubMed  CAS  Google Scholar 

  179. G. R. Torres, T. Lindgren, J. Lu, C. G. Granqvist, S. E. Lindquist, (2004), Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B. 108, 5995–6003.

    Article  CAS  Google Scholar 

  180. X. F. Qiu, Y. X. Zhao, C. Burda, (2007), Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles, Advanced Materials. 19, 3995–3999.

    Google Scholar 

  181. J. Hensel, G. M. Wang, Y. Li, J. Z. Zhang, (2010), Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation, Nano Letters. 10, 478–483.

    Article  PubMed  CAS  Google Scholar 

  182. Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, S. T. Lee, (2009), Vertically Aligned ZnO Nanorod Arrays Sensitized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells, Journal Of Physical Chemistry C. 113, 13433–13437.

    Article  CAS  Google Scholar 

  183. Y. Tak, S. J. Hong, J. S. Lee, K. Yong, (2009), Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion, Journal Of Materials Chemistry. 19, 5945–5951.

    Article  CAS  Google Scholar 

  184. Y. Nakato, M. Shioji, H. Tsubomura, (1982), Photoeffects on the potentials of thin metal films on a n-TiO2 crystal wafer. The mechanism of semiconductor photocatalysts, Chemical Physics Letters. 90, 453–456.

    CAS  Google Scholar 

  185. G. L. Zhao, H. Kozuka, T. Yoko, (1996), Photoelectrochemical properties of dye-sensitized TiO2 films containing dispersed gold metal particles prepared by sol-gel method, Journal Of The Ceramic Society Of Japan. 104, 164–168.

    Article  CAS  Google Scholar 

  186. N. Chandrasekharan, P. V. Kamat, (2000), Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles, Journal Of Physical Chemistry B. 104, 10851–10857.

    Article  CAS  Google Scholar 

  187. Y. Tian, T. Tatsuma, (2005), Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, Journal Of The American Chemical Society. 127, 7632–7637.

    Article  PubMed  CAS  Google Scholar 

  188. Y. Tian, T. Tatsuma, (2004), Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO 2, Chemical Communications. 2004, 1810–1811.

    Article  CAS  Google Scholar 

  189. A. Dawson, P. V. Kamat, (2001), Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles, Journal Of Physical Chemistry B. 105, 960–966.

    Article  CAS  Google Scholar 

  190. V. Subramanian, E. Wolf, P. V. Kamat, (2001), Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? Journal Of Physical Chemistry B. 105, 11439–11446.

    Article  CAS  Google Scholar 

  191. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, (2006), Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles, Applied Physics Letters. 89.

    Google Scholar 

  192. D. M. Schaadt, B. Feng, E. T. Yu, (2005), Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Applied Physics Letters. 86, 063106.

    Article  CAS  Google Scholar 

  193. K. R. Catchpole, A. Polman, (2008), Design principles for particle plasmon enhanced solar cells, Applied Physics Letters. 93.

    Google Scholar 

  194. K. Nakayama, K. Tanabe, H. A. Atwater, (2008), Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Applied Physics Letters. 93, 121904.

    Article  CAS  Google Scholar 

  195. W. Smith, S. Mao, G. H. Lu, A. Catlett, J. H. Chen, Y. P. Zhao, The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays, Chemical Physics Letters. 485, 171–175.

    Google Scholar 

  196. J. Z. Zhang, C. Noguez, (2008), Plasmonic optical properties and applications of metal nanostructures, Plasmonics. 3, 127–150.

    Article  CAS  Google Scholar 

  197. L. Liu, G. Wang, Y. Li, Y. Li, J. Z. Zhang, (2011), Enhanced photoresponse of CdSe quantum dot sensitized TiO2 nanoparticles by plasmonic gold nanoparticles, Nano Research. 4, 249–258.

    Google Scholar 

Download references

Acknowledgment

We are grateful to financial support from the US NSF, US DOE, US DoD, and NASA UARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Z. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Newhouse, R.J., Zhang, J.Z. (2012). Optical Properties and Applications of Shape-Controlled Metal Nanostructures. In: Geddes, C. (eds) Reviews in Plasmonics 2010. Reviews in Plasmonics, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0884-0_8

Download citation

Publish with us

Policies and ethics