Skip to main content

Fabrication and Application of Plasmonic Silver Nanosheet

  • Chapter
  • First Online:
Reviews in Plasmonics 2010

Abstract

In this review, we present our recent progress on “plasmonic silver nanosheet” composed of two dimensional (2D) crystalline domains with uniformly sized silver nanoparticles (AgNPs, d = 4.8 ± 0.1 nm). In this 2D crystalline sheet, the localized surface plasmon resonance (LSPR) band was tuned accurately by the interparticle distance of AgNPs via the length of capping organic molecules (myristate, alkanethiolates). A homogeneous coupling of LSPR in 2D crystalline sheet results in not only a significant red-shift, but also a sharpened LSPR band even compared with that in solution dispersion. This flexible, transferable nanosheet, which can trap and transport bulk light at nano-interface, promises new application in the field of bio- and organic devices. This topic is quite new and all the investigations have not been completed yet; nevertheless, we present the principle of this technique together with some potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid G, Talapin DV, Shevchenko EV (2004) Nanoparticles: From theory to applications. Weinheim, Germany: 251–298.

    Google Scholar 

  2. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Vol. 1, John Wiley & Sons, Inc., New York.

    Book  Google Scholar 

  3. Toshima, N, Yonezawa T (1998) Bimetallic nanoparticles - novel materials for chemical and physical applications. New J. of Chem. 22 (11): 1179–1201.

    Article  CAS  Google Scholar 

  4. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24): 5599–5611. (b)Haes AJ, Zou B, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of novel metal nanoparticles. J. Phys. Chem. B 108: 109–116.

    Google Scholar 

  5. Kawata S (2001) Near-field optics and surface polaritons. Springer, Berlin.

    Book  Google Scholar 

  6. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382 (6592): 607–609. (b)Taton TA, Mirkin CA, Letsinger RL (2000) Secanometric DNA array detection with nanoparticle probes. Science, 289(8): 1757–1760.

    Google Scholar 

  7. Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang JA, Badugu R, Huang J (2004) Advances in surface enhanced fluorescence. J. Fluorescence, 14(4): 425–441. (b)Aslan K, Geddes CD (2008) A review of an ultrafast and sensitive bioassay platform technology: Microwave-accelated metal-enhanced fluorescence. Plasmonics, 3: 89–101. (c)Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 7(7): 2101–2107.

    Google Scholar 

  8. Tsuboi K, Fukuba S, Naraoka R, Fujita K, Kajikawa K (2006) Second-harmonic spectroscopy of surface immobilized gold nanospheres above a gold surface supported by self-assembled monolayers. J. Phys. Chem. B, 125(17): 174703. (b)Abe S, Kajikawa K (2006) Linear and nonlinear optical properties of gold nanospheres immobilized on a metallic surface. Phys. Rev. B, 74(3), 035416.

    Google Scholar 

  9. Nie S, Emroy SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275: 1102–1106.

    Article  PubMed  CAS  Google Scholar 

  10. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials, 3(9): 601–605.

    Article  PubMed  CAS  Google Scholar 

  11. Xie XN, Xie Y, Gao X, Sow CH, Wee ATS (2009) Metallic nanoparticle network for photocurrent generation and photodetection. Adv. Mater. 21: 3016–3021.

    Article  CAS  Google Scholar 

  12. Zheng YB, Juluri BK, Mao X, Walker TR, Huang TJ (2008) Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays. J. Appl. Phys. 103: 014308.

    Article  Google Scholar 

  13. Sendroiu IE, Mertens SFL, Schiffrin D (2006) Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation. Phys. Chem. Chem. Phys. 8: 1430–1436.

    Article  PubMed  CAS  Google Scholar 

  14. Jain PK, Huang W, EI-Sayed, MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7(7): 2080–2088.

    Google Scholar 

  15. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Kall M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109: 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  16. Jain PK, EI-Sayed MA (2008) Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers. J. Phys. Chem. C, 112: 4954–4960. (b)Huang W, Qian W, Jain PK, EI-Sayed MA (2007) The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett., 7(19): 3227–3234.

    Google Scholar 

  17. Reinhard BM, Siu M, Agarwal H, Alivisatos P, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 5: 2246–2252.

    Article  PubMed  CAS  Google Scholar 

  18. Sendroiu IE, Schiffrin DJ, Abad JM (2008) Nanoparticle organization by a Co(II) coordination chemistry directed recognition reaction. J. Phys. Chem. C, 12: 10100–10107.

    Article  Google Scholar 

  19. Nakamura F, Ito M, Manna A, Tamada K, Hara M, Knoll W (2006) Observation of hybridization on a DNA array by surface plasmon resonance imaging using Au nanoparticles. Jpn. J. Appl. Phys. 45(2A): 1026–1029. (b)Tamada K, Nakamura F, Ito M, Li X, Baba A (2007) SPR-based DNA Detection with Metal Nanoparticles. Plasmonics, 2(4): 185–191.

    Google Scholar 

  20. Ito M, Nakamura F, Baba A, Tamada K, Ushijima H, Lau KHA, Manna A, Knoll W (2007) Enhancement of surface plasmon resonance signals by gold nanoparticles on high-density DNA microarrays. J. Phys. Chem. C 111(31): 11653–11662.

    Article  CAS  Google Scholar 

  21. Li X, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of Dielectric Function of Biotin-Capped Gold Nanoparticles via Signal Enhancement on Surface Plasmon Resonance. J. Phys. Chem. B 110(32): 15755–15762.

    Article  PubMed  CAS  Google Scholar 

  22. Li X, Tamada K, Baba A, Hara M (2009) pH controlled two dimensional gold nanoparticle aggregates for systematic study of local surface plasmon coupling. J. Nanoscience and Nanotechnology, 9(1), 408–416.

    Article  Google Scholar 

  23. Okamoto T, Yamaguchi I, Kobayashi T (2000) Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Optics Lett. 25(6): 372–374.

    Article  CAS  Google Scholar 

  24. Tamada K, Michioka K, Li X, Ikezoe Y, Saito M, Otsuka K, (2009) Bioapplication of plasmonic nanosheet. Proc.of SPIE, 7213: 72130E.

    Google Scholar 

  25. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 49: 569–638.

    Article  PubMed  CAS  Google Scholar 

  26. Porter, L.A, Ji D, Westcott SL, Graupe M, Czernuszewicz RS, Halas NJ, Lee TR (1998) Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir 14(26):7378–7386.

    Article  CAS  Google Scholar 

  27. Nagasawa H, Maruyama M, Komatsu T, Isoda S, Kobayashi T (2002) Physical characteristics of stabilized silver nanoparticles formed using a new thermal-decomposition method. Phys. Status Solid A, 191: 67–76.

    Article  CAS  Google Scholar 

  28. Yamamoto M, Kashiwagi Y, Nakamoto M (2006) Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and ­tertiary amine. Langmuir, 22: 8581–8586.

    Article  PubMed  CAS  Google Scholar 

  29. Keum CD, Ishii N, Michioka K, Wulandari P, Tamada K, Furusawa M, Fukushima H (2008) A gram scale synthesis of monodispersed silver nanoparticles capped by carboxylates and their ligand exchange. J. Nonlinear Opt. Phys. & Mater. 17(2): 131–142.

    Article  CAS  Google Scholar 

  30. Nagasawa H, Maruyama M, Komatsu T, Isoda S, Kobayashi T (2002) Physical characteristics of stabilized silver nanoparticles formed using a new thermal-decomposition method. Phys. Status Solidi A 191: 67–76.

    Article  CAS  Google Scholar 

  31. Kelly KL, Coronado E, Zhao LL, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107: 668–677.

    Article  CAS  Google Scholar 

  32. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109: 3559–3568.

    Article  CAS  Google Scholar 

  33. Obara D, Nakada T, Hayashi T, Akiyama H, Tamada K, to be submitted.

    Google Scholar 

  34. Wulandari P, Nagahiro T, Michioka K, Tamada K, Ishibashi K, Kimura Y, Niwano M (2008) Coordination of Carboxylate on Metal Nanoparticles Characterized by Fourier Transform Infrared Spectroscopy. Chem. Lett. 37(8): 888–889.

    Article  CAS  Google Scholar 

  35. Toma M, Toma K, Michioka K, Ikezoe Y, Obara D, Okamoto K, Tamada K (2011) Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet, Phys. Chem. 13:7459–7466.

    Google Scholar 

  36. Liedberg B, Lundstrom L (1993) Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensor and Actuators B, 11, 63–72. (b)Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem, 377: 528–539.

    Google Scholar 

  37. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids and surfaces A, 171: 115–130. (b)Tawa K, Yao DF, Knoll W(2005) Matching ­base-pair number dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy. Biosensors and Bioelectronics, 21: 322–329. (c)Robelek R, Niu LF, Schmid EL, Knoll W (2004) Multiplexed hybridization detection of quantum ­dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. Anal. Chem. 76: 6160–6165.

    Article  Google Scholar 

  38. Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96(12): 7519–7526.

    Article  CAS  Google Scholar 

  39. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101 (9): 093105.

    Article  Google Scholar 

  40. Wen C, Ishikawa K, Kishima M, Yamada K (2000) Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films. Solar Energy Materials & Solar Cells 61: 339–351.

    Article  CAS  Google Scholar 

  41. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv. Mater. 11: 605–6025.

    Article  CAS  Google Scholar 

  42. Katano S, Toma M, Toma K, Tamada K, Uehara Y (2010) Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy, Phys. Chem. 12:14749–14753.

    Google Scholar 

  43. Nagahiro T, Ishibashi K, Kimura Y, Niwano M, Hayashi T, Ikezoe Y, Hara M, Tatsuma T, Tamada K (2010) Ag nanoparticle sheet as a marker of lateral remote photocatalytic reactions. Nanoscale 2: 107–113.

    Article  PubMed  CAS  Google Scholar 

  44. Taleb A, Petit C, Pileni MP (1998) Optical properties of self-assembled 2D and 3D superlattice of silver nanoparticles. J. Phys. Chem. B, 102, 2214–2220.

    Article  CAS  Google Scholar 

  45. Ikezoe Y, Kumashiro Y, Tamada K, Matsui T, Yamashita I, Shiba K, Hara M, Growth of giant two-dimensional crystal of protein molecules from a three-phase contact line. Langmuir, 24(22):12836–12841.

    Google Scholar 

  46. Feng CL, Zhong XH, Steinhart M, Caminade AM, Majoral JP (2008) Functional quanum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small, 4(5): 566–571.

    Article  PubMed  CAS  Google Scholar 

  47. Acharya H, Sung J, Sohn BH, Kim DH, Tamada K, Park C (2010) Tunable surface plasmon band pf position selective Ag and Au nanoparticles in thin block copolymer micelle films. Chem. Mater 21: 4248–4255.

    Article  Google Scholar 

  48. Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 84(20): 4721–4724.

    Article  PubMed  CAS  Google Scholar 

  49. Chiu NFC, Lin CW, Lee JH, Kuan CH, Wu KC, Lee CK (2007) Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device. Appl. Phys. Lett. 91: 083114.

    Article  Google Scholar 

  50. Papanikolaou N (2007) Optical properties of metallic nanoparticle arrays on a thin metallic film, Phys. Rev. B, 75: 235426.

    Article  Google Scholar 

  51. Cui XQ, Tawa K, Hori H, Nishi J (2010) Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic Imaging. Adv. Func. Mater. 20 (4): 546–553.

    Article  CAS  Google Scholar 

  52. Sivaramakrishnan S, Chia PJ, Yeo YC, Chua LL, Ho PKH (2007) Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nature Materials 6: 149–155.

    Google Scholar 

  53. Eurenius L, Hagglund C, Olsson E, Kasemo B, Chakarov D Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes. Nature Photonics 2: 360–364.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific Research (B), JSPS (21310067), Grant to promote basic research by research personnel in private-sector business, JST, and Nation-wide Cooperative Research Projects, RIEC, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Tamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tamada, K. et al. (2012). Fabrication and Application of Plasmonic Silver Nanosheet. In: Geddes, C. (eds) Reviews in Plasmonics 2010. Reviews in Plasmonics, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0884-0_5

Download citation

Publish with us

Policies and ethics