Skip to main content

Influence of Electron Quantum Confinement on the Electronic Response of Metal/Metal Interfaces

  • Chapter
  • First Online:
Reviews in Plasmonics 2010

Part of the book series: Reviews in Plasmonics ((RIP,volume 2010))

Abstract

Herein we report on high-resolution electron energy loss spectroscopy (HREELS) measurements on surface plasmon dispersion in systems exhibiting quantum well states (QWS), i.e., Na/Cu(111), Ag/Cu(111), and Ag/Ni(111). Our results demonstrate that the dominant coefficient of surface plasmon dispersion for thin and layer-by-layer Ag films presenting QWS is quadratic even at small q, in contrast with previous measurements on Ag semi-infinite media and Ag thin films deposited on Si(111). We suggest that this behavior is due to screening effects enhanced by the presence of QWS shifting the position of the centroid of the induced charge less inside the geometrical surface compared to Ag surfaces and Ag/Si(111). For ultrathin Ag films, i.e., two layers, the dispersion was found to be not positive, as theoretically predicted. Annealing of the Ag film caused an enhancement of the free-electron character of the QWS, thus inducing a negative linear term of the dispersion curve of the surface plasmon. Moreover, we report the first experimental evidence of chemical interface damping in thin films for K/Ag/Ni(111). As regards Na/Cu(111), we found a different dispersion curve compared to thick Na films, thus confirming the enhanced screening by Na QWS.Results reported here should shed light on the influence of QWS on dynamical screening phenomena in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valla T, Kralj M, Siber A, Milun M, Pervan P, Johnson PD, Woodruff DP (2000) Oscillatory electron-phonon coupling in ultra-thin silver films on V(100). Journal of Physics: Condensed Matter, 12 (28), L477–L482

    Article  CAS  Google Scholar 

  2. Politano A, Formoso V, Chiarello G (2009) Chemical Reactions at Clean and Alkali-Doped Mismatched Metal/Metal Interfaces. Journal of Physical Chemistry C, 113 (1), 316–320

    Article  CAS  Google Scholar 

  3. Wei CM, Chou MY (2002) Theory of quantum size effects in thin Pb(111) films. Physical Review B, 66 (23), 233408

    Article  CAS  Google Scholar 

  4. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): Dependence of water reactivity as a function of Na coverage. The Journal of Chemical Physics, 126 (24), 244712

    Article  PubMed  CAS  Google Scholar 

  5. Luh DA, Miller T, Paggel JJ, Chiang TC (2002) Large electron-phonon coupling at an interface. Physical Review Letters, 88 (25), 256802

    Article  PubMed  CAS  Google Scholar 

  6. Pfennigstorf O, Petkova A, Guenter HL, Henzler M (2002) Conduction mechanism in ultrathin metallic films. Physical Review B, 65 (4), 045412

    Article  CAS  Google Scholar 

  7. Orr BG, Jaeger HM, Goldman AM (1984) Transition-Temperature Oscillations in Thin Superconducting Films. Physical Review Letters, 53 (21), 2046

    Google Scholar 

  8. Chiang T-C (2004) PHYSICS: Superconductivity in Thin Films. Science, 306 (5703), 1900–1901

    Article  PubMed  CAS  Google Scholar 

  9. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2008) Purely quadratic ­dispersion of surface plasmon in Ag/Ni(111): the influence of electron confinement. Physica Status Solidi-Rapid Research Letters, 2 (2), 86–88

    Article  CAS  Google Scholar 

  10. Yu YH, Tang Z, Jiang Y, Wu KH, Wang EG (2006) Thickness dependence of the surface plasmon dispersion in ultrathin aluminum films on silicon. Surface Science, 600 (22), 4966–4971

    Article  CAS  Google Scholar 

  11. Pitarke JM, Nazarov VU, Silkin VM, Chulkov EV, Zaremba E, Echenique PM (2004) Theory of acoustic surface plasmons. Physical Review B, 70 (20), 205403

    Google Scholar 

  12. Bastidas CL, Liebsch A, Mochan RL (2001) Influence of d electrons on the dispersion ­relation of Ag surface plasmons for different single-crystal faces. Physical Review B, 63 (16), 165407

    Article  CAS  Google Scholar 

  13. Liebsch A (1998) Prediction of a Ag multipole surface plasmon. Physical Review B, 57 (7), 3803–3806

    Article  CAS  Google Scholar 

  14. Kim JS, Chen LM, Kesmodel LL, GarciaGonzalez P, Liebsch A (1997) Surface plasmon dispersion of Cl/Ag(111). Physical Review B, 56 (8), R4402–R4405

    Article  CAS  Google Scholar 

  15. Politano A, Formoso V, Chiarello G (2009) Dispersion and damping of surface plasmon in Ag thin films grown on Cu(111) and Ni(111). Superlattices and Microstructures, 46 (1–2), 137–140

    Article  CAS  Google Scholar 

  16. Politano A, Formoso V, Chiarello G (2009) Damping of the surface plasmon in clean and K-modified Ag thin films. Journal of Electron Spectroscopy and related Phenomena, 173 (1), 12–17

    Article  CAS  Google Scholar 

  17. Politano A, Formoso V, Chiarello G (2008) Dispersion and Damping of Gold Surface Plasmon. Plasmonics, 3 (4), 165–170

    Article  CAS  Google Scholar 

  18. Yu YH, Jiang Y, Tang Z, Guo QL, Jia JF, Xue QK, Wu KH, Wang EG (2005) Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films. Physical Review B, 72 (20), 205405

    Article  CAS  Google Scholar 

  19. Savio L, Vattuone L, Rocca M (2003) Surface plasmon dispersion on sputtered and ­nanostructured Ag(001). Physical Review B, 67 (4), 045406

    Article  CAS  Google Scholar 

  20. Rocca M, Moresco F (1996) HREELS and ELS-LEED studies of surface plasmons on Ag and Pd single crystals. Progress in Surface Science, 53 (2–4), 331–340

    Article  CAS  Google Scholar 

  21. Moresco F, Rocca M, Zielasek V, Hildebrandt T, Henzler M (1997) ELS-LEED study of the surface plasmon dispersion on Ag surfaces. Surface Science, 388 (1–3), 1–4

    Article  CAS  Google Scholar 

  22. Savio L, Vattuone L, Rocca M (2000) Effect of surface interband transitions on surface ­plasmon dispersion: O/Ag(001). Physical Review B, 61 (11), 7324–7327

    Article  CAS  Google Scholar 

  23. Chiarello G, Formoso V, Santaniello A, Colavita E, Papagno L (2000) Surface-plasmon ­dispersion and multipole surface plasmons in Al(111). Physical Review B, 62 (19), 12676–12679

    Article  CAS  Google Scholar 

  24. Moresco F, Rocca M, Hildebrandt T, Zielasek V, Henzler M (1998) Influence of surface interband transitions on surface plasmon dispersion: K/Ag(110). Europhysics Letters, 43 (4), 433–438

    Article  CAS  Google Scholar 

  25. Kevan SD (1983) Evidence for a New Broadening Mechanism in Angle-Resolved Photoemission from Cu(111). Physical Review Letters, 50 (7), 526

    Article  CAS  Google Scholar 

  26. Tang SJ, Jeng HT, Ismail, Sprunger PT, Plummer EW (2009) Surface electronic band structure and temperature dependence of the surface state at Ā on Mg (10 1– 0) surface. Physical Review B, 80 (8), 085419

    Google Scholar 

  27. Sklyadneva IY, Heid R, Silkin VM, Melzer A, Bohnen KP, Echenique PM, Fauster T, Chulkov EV (2009) Unusually weak electron-phonon coupling in the Shockley surface state on Pd(111). Physical Review B, 80 (4), 045429

    Google Scholar 

  28. Scheybal A, Müller K, Bertschinger R, Wahl M, Bendounan A, Aebi P, Jung TA (2009) Modification of the Cu(110) Shockley surface state by an adsorbed pentacene monolayer. Physical Review B, 79 (11), 115406

    Google Scholar 

  29. Nishimura Y, Kakeya M, Higashiguchi M, Kimura A, Taniguchi M, Narita H, Cui Y, Nakatake M, Shimada K, Namatame H (2009) Surface electronic structures of ferromagnetic Ni(111) studied by STM and angle-resolved photoemission. Physical Review B, 79 (24), 245402

    Google Scholar 

  30. Mulazzi M, Rossi G, Braun J, Minár J, Ebert H, Panaccione G, Vobornik I, Fujii J (2009) Understanding intensities of angle-resolved photoemission with circularly polarized radiation from a Cu(111) surface state. Physical Review B, 79 (16), 165421

    Article  CAS  Google Scholar 

  31. Kowalczyk PJ (2009) Investigation of STM tip influence on the recorded position of the Shockley surface state on Au(1 1 1). Surface Science, 603 (5), 747–751

    Article  CAS  Google Scholar 

  32. Braun KF, Hla SW (2009) Inelastic quasiparticle lifetimes of the Shockley surface state band on Ni(111). Applied Physics A: Materials Science and Processing, 98 (3), 583–588

    Google Scholar 

  33. Scheybal A, Müller K, Bertschinger R, Wahl M, Bendounan A, Aebi P, Jung TA (2009) Modification of the Cu(110) Shockley surface state by an adsorbed pentacene monolayer. Physical Review B, 79 (11), 115406

    Article  CAS  Google Scholar 

  34. Nishimura Y, Kakeya M, Higashiguchi M, Kimura A, Taniguchi M, Narita H, Cui Y, Nakatake M, Shimada K, Namatame H (2009) Surface electronic structures of ferromagnetic Ni(111) studied by STM and angle-resolved photoemission. Physical Review B, 79 (24), 245402

    Article  CAS  Google Scholar 

  35. Mulazzi M, Rossi G, Braun J, Minár J, Ebert H, Panaccione G, Vobornik I, Fujii J (2009) Understanding intensities of angle-resolved photoemission with circularly polarized radiation from a Cu(111) surface state. Physical Review B - Condensed Matter and Materials Physics, 79 (16), 165421

    Google Scholar 

  36. Kowalczyk PJ (2009) Investigation of STM tip influence on the recorded position of the Shockley surface state on Au(111). Surface Science, 603 (5), 747–751

    Article  CAS  Google Scholar 

  37. Nuber A, Higashiguchi M, Forster F, Blaha P, Shimada K, Reinert F (2008) Influence of reconstruction on the surface state of Au(110). Physical Review B, 78 (19), 195412

    Article  CAS  Google Scholar 

  38. Kowalczyk PJ, Puchalski M, Kozłowski W, Dabrowski P, Klusek Z, Olejniczak W (2008) Investigation of the Shockley surface state on clean and air-exposed Au (1 1 1). Applied Surface Science, 254 (15), 4572–4576

    Article  CAS  Google Scholar 

  39. Vergniory MG, Pitarke JM, Echenique PM (2007) Self-energy and lifetime of Shockley and image states on Cu(100) and Cu(111): Beyond the GW approximation of many-body theory. Physical Review B, 76 (24), 245416

    Article  CAS  Google Scholar 

  40. Higashiguchi M, Shimada K, Arita M, Miura Y, Tobita N, Cui X, Aiura Y, Namatame H, Taniguchi M (2007) High-resolution angle-resolved photoemission study of Ni(1 1 1) surface state. Surface Science, 601 (18), 4005–4009

    Article  CAS  Google Scholar 

  41. Schiller F, Laubschat C (2006) Surface states at close-packed surfaces of simple metals. Physical Review B, 74 (8), 085109

    Article  CAS  Google Scholar 

  42. Caravati S, Butti G, Brivio GP, Trioni MI, Pagliara S, Ferrini G, Galimberti G, Pedersoli E, Giannetti C, Parmigiani F (2006) Cu(111) and Cu(001) surface electronic states. Comparison between theory and experiment. Surface Science, 600 (18), 3901–3905

    CAS  Google Scholar 

  43. Zhang X, Liu J, Li B, Wang K, Ming F, Wang J, Xiao X (2010) Effect of substrate doping concentration on quantum well states of Pb island grown on Si(1 1 1). Surface Science, 604 (2), 175–180

    Article  CAS  Google Scholar 

  44. Trontl VM, Pervan P, Milun M (2009) Growth and electronic properties of ultra-thin Ag films on Ni(111). Surface Science, 603 (1), 125–130

    Article  CAS  Google Scholar 

  45. Sawa K, Aoki Y, Hirayama H (2009) Thickness dependence of Shockley-type surface states of Ag(111) ultrathin films on Si (111) 7×7 substrates. Physical Review B, 80 (3), 035428

    Article  CAS  Google Scholar 

  46. Rybkin AG, Shikin AM, Adamchuk VK (2009) Spectra of quantum states in thin metal films and their modification: Al/ W(110) system. Bulletin of the Russian Academy of Sciences: Physics, 73 (5), 683–685

    Article  Google Scholar 

  47. Pervan P, Milun M (2009) Photoemission from 2D metallic quantum wells. Surface Science, 603 (10–12), 1378–1388

    Article  CAS  Google Scholar 

  48. Okuda T, Takeichi Y, He K, Harasawa A, Kakizaki A, Matsuda I (2009) Substrate dependence of anisotropic electronic structure in Ag(111) quantum film studied by angle-resolved photoelectron spectroscopy. Physical Review B, 80 (11), 113409

    Article  CAS  Google Scholar 

  49. Lin X, Nilius N, Freund HJ, Walter M, Frondelius P, Honkala K, Häkkinen H (2009) Quantum well states in two-dimensional gold clusters on MgO thin films. Physical Review Letters, 102 (20), 206801

    Article  PubMed  CAS  Google Scholar 

  50. Choi J, Wu J, El Gabaly F, Schmid AK, Hwang C, Qiu ZQ (2009) Quantum well states in Au/Ru(0001) and their effect on the magnetic properties of a Co overlayer. New Journal of Physics, 11, 043016

    Article  CAS  Google Scholar 

  51. Wang LL, Ma XC, Ji SH, Fu YS, Shen QT, Jia JF, Kelly KF, Xue QK (2008) Epitaxial growth and quantum well states study of Sn thin films on Sn induced Si(111)- (23×23) R30° surface. Physical Review B, 77 (20), 205410

    Article  CAS  Google Scholar 

  52. Tang SJ, Chang WK, Chiu YM, Chen HY, Cheng CM, Tsuei KD, Miller T, Chiang TC (2008) Enhancement of subband effective mass in Ag/Ge(111) thin film quantum wells. Physical Review B, 78 (24), 245407

    Article  CAS  Google Scholar 

  53. Pletikosić I, Trontl VM, Milun M, Okević D, Brako R, Pervan P (2008) D-band quantum well states in Ag(111) monolayer films; Substrate-induced shifts. Journal of Physics: Condensed Matter, 20 (35), 355004

    Article  CAS  Google Scholar 

  54. Miyata N, Horikoshi K, Hirahara T, Hasegawa S, Wei CM, Matsuda I (2008) Electronic transport properties of quantum-well states in ultrathin Pb (111) films. Physical Review B, 78 (24), 245405

    Article  CAS  Google Scholar 

  55. He K, Hirahara T, Okuda T, Hasegawa S, Kakizaki A, Matsuda I (2008) Spin polarization of quantum well states in Ag films induced by the Rashba effect at the surface. Physical Review Letters, 101 (10), 107604

    Article  PubMed  CAS  Google Scholar 

  56. Algdal J, Balasubramanian T, Breitholtz M, Chis V, Hellsing B, Lindgren SÅ, Walldén L (2008) Sodium and potassium monolayers on Be(0001) investigated by photoemission and electronic structure calculations. Physical Review B, 78 (8), 085102

    Google Scholar 

  57. Mathias S, Wessendorf M, Passlack S, Aeschlimann M, Bauer M (2006) Morphological modifications of Ag/Cu(111) probed by photoemission spectroscopy of quantum well states and the Shockley surface state. Applied Physics A: Materials Science and Processing, 82 (3), 439–445

    Article  CAS  Google Scholar 

  58. Luh D-A, Cheng C-M, Tsai C-T, Tsuei K-D, Tang J-M (2008) Transition from Disorder to Order in Thin Metallic Films Studied with Angle-Resolved Photoelectron Spectroscopy. Physical Review Letters, 100 (2), 027603

    Article  PubMed  CAS  Google Scholar 

  59. Politano A, Agostino RG, Formoso V, Chiarello G (2008) Short-range interactions in Na coadsorption with CO and O on Ni(111). Chemphyschem, 9 (8), 1189–1194

    Article  PubMed  CAS  Google Scholar 

  60. Politano A, Agostino RG, Colavita E, Formoso V, Tenuta L, Chiarello G (2008) Nature of the alkali surface bond at low coverages investigated by vibrational measurements. Journal of Physical Chemistry C, 112 (17), 6977–6980

    Article  CAS  Google Scholar 

  61. Politano A, Formoso V, Chiarello G (2008) Mechanisms Leading to Alkali Oxidation on Metal Surfaces. Journal of Physical Chemistry C, 112 (46), 17772–17774

    Article  CAS  Google Scholar 

  62. Politano A, Formoso V, Chiarello G (2009) Effects of O adsorption on the Na + CO/Ni(111) system. Superlattices and Microstructures, 46 (1–2), 10–13

    Article  CAS  Google Scholar 

  63. Chiarello G, Barberi R, Amoddeo A, Caputi LS, Colavita E (1996) XPS and AFM characterization of a vanadium oxide film on TiO2(100) surface. Applied Surface Science, 99 (1), 15–19

    Article  CAS  Google Scholar 

  64. Rocca M, Biggio F, Valbusa U (1990) Surface-plasmon spectrum of Ag(001) measured by high-resolution angle-resolved electron-energy-loss spectroscopy. Physical Review B, 42 (5), 2835–2841

    Article  CAS  Google Scholar 

  65. Marini A, Del Sole R, Onida G (2002) First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation. Physical Review B, 66 (11), 1151011

    Article  CAS  Google Scholar 

  66. Liebsch A (1997) Electronic Excitations at Metal Surfaces, Plenum, New York

    Google Scholar 

  67. Li YB, Levi AC, Rocca M (1995) Anisotropy of Surface-Plasmons in Metals. Surface Science, 336 (3), 371–376

    Article  CAS  Google Scholar 

  68. Rocca M (1995) Low-Energy Eels Investigation of Surface Electronic Excitations on Metals. Surface Science Reports, 22 (1–2), 1–71

    Article  CAS  Google Scholar 

  69. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 70, 1–87

    Article  CAS  Google Scholar 

  70. Politano A, Chiarello G (2009) Tuning the lifetime of the surface plasmon upon sputtering. Physica Status Solidi-Rapid Research Letters, 3 (5), 136–138

    Article  CAS  Google Scholar 

  71. Politano A, Formoso V, Chiarello G (2009) Annealing effects on the plasmonic excitations of metal/metal interfaces. Applied Surface Science, 255 (11), 6038–6042

    Article  CAS  Google Scholar 

  72. Politano A, Formoso V, Chiarello G (2009) Electronic properties of metallic bilayers ­deposited on Cu(111): A comparative study. Surface Science, 603 (6), 933–937

    Article  CAS  Google Scholar 

  73. Politano A, Formoso V, Chiarello G (2009) Interference effects in the excitation of collective electronic modes in nanoscale thin Ag films. Superlattices and Microstructures, 46 (1–2), 166–170

    Article  CAS  Google Scholar 

  74. Politano A, Formoso V, Colavita E, Chiarello G (2009) Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111). Physical Review B, 79 (4), 045426

    Article  CAS  Google Scholar 

  75. Fujikawa Y, Sakurai T, Tromp RM (2008) Surface Plasmon Microscopy Using an Energy-Filtered Low Energy Electron Microscope. Physical Review Letters, 100 (12), 126803

    Article  PubMed  CAS  Google Scholar 

  76. Moresco F, Rocca M, Hildebrandt T, Henzler M (1999) Plasmon confinement in ultrathin continuous Ag films. Physical Review Letters, 83 (11), 2238–2241

    Article  CAS  Google Scholar 

  77. Chelaru LI, Meyer zu Heringdorf FJ (2007) In situ monitoring of surface plasmons in ­single-crystalline Ag-nanowires. Surface Science, 601 (18), 4541–4545

    Google Scholar 

  78. Lazzari R, Jupille J, Layet JM (2003) Electron-energy-loss channels and plasmon confinement in supported silver particles. Physical Review B, 68 (4), 454281–4542811

    Article  CAS  Google Scholar 

  79. Nilius N, Ernst N, Freund HJ (2000) Photon Emission Spectroscopy of Individual ­Oxide-Supported Silver Clusters in a Scanning Tunneling Microscope. Physical Review Letters, 84 (17), 3994–3997

    Article  PubMed  CAS  Google Scholar 

  80. Varykhalov A, Shikin AM, Gudat W, Moras P, Grazioli C, Carbone C, Rader O (2005) Probing the Ground State Electronic Structure of a Correlated Electron System by Quantum Well States: Ag/Ni(111). Physical Review Letters, 95 (24), 247601

    Article  PubMed  CAS  Google Scholar 

  81. Mróz S, Jankowski Z (1995) Properties of ultrathin silver layers on the Ni(111) face. Surface Science, 322 (1–3), 133–139

    Article  Google Scholar 

  82. Mróz S, Jankowski Z, Nowicki M (2000) Growth and isothermal desorption of ultrathin ­silver layers on the Ni(111) face at the substrate temperature from 180 to 900 K. Surface Science, 454 (1), 702–706

    Article  Google Scholar 

  83. Mróz S (1995) Directional elastic peak and directional Auger electron spectroscopies - New tools for investigating surface-layer atomic structure. Progress in Surface Science, 48 (1–4), 157–166

    Article  Google Scholar 

  84. Politano A, Chiarello G, Formoso V, Agostino RG, Colavita E (2006) Plasmon of Shockley surface states in Cu(111) : A high-resolution electron energy loss spectroscopy study. Physical Review B, 74 (8), 081401

    Article  CAS  Google Scholar 

  85. Borensztein Y, Roy M, Alameh R (1995) Threshold and Linear Dispersion of the Plasma Resonance in Thin Ag Films. EPL (Europhysics Letters), 31 (5–6), 311

    Article  CAS  Google Scholar 

  86. Politano A, Formoso V, Chiarello G (2010) Plasmonic Modes Confined in Nanoscale Thin Silver Films Deposited onto Metallic Substrates Journal of Nanoscience and Nanotechnology, 10 (2), 1313–1321

    Article  PubMed  CAS  Google Scholar 

  87. Suto S, Tsuei KD, Plummer EW, Burstein E (1989) Surface-plasmon energy and dispersion on Ag single crystals. Physical Review Letters, 63 (23), 2590–2593

    Article  PubMed  CAS  Google Scholar 

  88. Rocca M, Lazzarino M, Valbusa U (1991) Surface-Plasmon Energy and Dispersion on Ag Single-Crystals - Comment. Physical Review Letters, 67 (22), 3197–3197

    Article  PubMed  CAS  Google Scholar 

  89. Lee G, Sprunger PT, Plummer EW, Suto S (1991) Lee et al. reply. Physical Review Letters, 67 (22), 3198

    Article  PubMed  CAS  Google Scholar 

  90. Feibelman PJ (1982) Surface electromagnetic fields. Progress in Surface Science, 12 (4), 287–407

    Article  CAS  Google Scholar 

  91. Feibelman PJ (1973) Sensitivity of surface plasmon dispersion and damping to alkali ­adsorption. Surface Science, 40 (1), 102–108

    Article  CAS  Google Scholar 

  92. Feibelman PJ (1974) Microscopic calculation of surface-plasmon dispersion and damping. Physical Review B, 9 (12), 5077–5098

    Article  CAS  Google Scholar 

  93. Feibelman PJ (1993) Perturbation of surface plasmon dispersion by “extra” electrons near a surface. Surface Science Letters, 282 (1–2), 129–136

    CAS  Google Scholar 

  94. Feibelman PJ (1994) Comment on Surface plasmon dispersion of Ag. Physical Review Letters, 72 (5), 788

    Article  PubMed  CAS  Google Scholar 

  95. Feibelman PJ (1989) Interpretation of the linear coefficient of surface-plasmon dispersion. Physical Review B, 40 (5), 2752–2756

    Article  Google Scholar 

  96. Feibelman PJ (1973) Sensitivity of surface-plasmon dispersion and damping to potential ­barrier shape. Physical Review Letters, 30 (20), 975–978

    Article  CAS  Google Scholar 

  97. Feibelman PJ (1971) Dependence of the normal modes of plasma oscillation at a bimetallic interface on the electron density profile. Physical Review B, 3 (9), 2974–2982

    Article  Google Scholar 

  98. Feibelman PJ, Tsuei KD (1990) Negative surface-plasmon dispersion coefficient: A physically illustrative, exact formula. Physical Review B, 41 (12), 8519–8521

    Article  Google Scholar 

  99. Rocca M, Lazzarino M, Valbusa U (1992) Surface-Plasmon on Ag(110) - Observation of Linear and Positive Dispersion and Strong Azimuthal Anisotropy. Physical Review Letters, 69 (14), 2122–2125

    Article  PubMed  CAS  Google Scholar 

  100. Silkin VM, Quijada M, Muino RD, Chulkov EV, Echenique PM (2007) Dynamic screening and electron-electron scattering in low-dimensional metallic systems. Surface Science, 601 (18), 4546–4552

    Article  CAS  Google Scholar 

  101. Silkin VM, Quijada M, Vergniory MG, Alducin M, Borisov AG, Muino RD, Juaristi JI, Sanchez-Portal D, Chulkov EV, Echenique PM (2007) Dynamic screening and electron dynamics in low-dimensional metal systems. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 258 (1), 72–78

    Article  CAS  Google Scholar 

  102. Chiang TC (2000) Photoemission studies of quantum well states in thin films. Surface Science Reports, 39 (7–8), 181–235

    Article  CAS  Google Scholar 

  103. Tsuei KD, Plummer EW, Liebsch A, Pehlke E, Kempa K, Bakshi P (1991) The Normal-Modes at the Surface of Simple Metals. Surface Science, 247 (2–3), 302–326

    Article  CAS  Google Scholar 

  104. Rocca M, Lazzarino M, Valbusa U (1992) Plasmon Damping and Surface Interband-Transitions on Ag(001) and (011). Surface Science, 270, 560–562

    Article  Google Scholar 

  105. Rocca M, Li YB, Demongeot FB, Valbusa U (1995) Surface-Plasmon Dispersion and Damping on Ag(111). Physical Review B, 52 (20), 14947–14953

    Article  CAS  Google Scholar 

  106. Rocca M, Moresco F, Valbusa U (1992) Temperature-Dependence of Surface-Plasmons on Ag(001). Physical Review B, 45 (3), 1399–1402

    Article  CAS  Google Scholar 

  107. Rocca M, Valbusa U (1990) Angular-Dependence of Dipole Scattering Cross-Section - Surface-Plasmon Losses on Ag(100). Physical Review Letters, 64 (20), 2398–2401

    Article  PubMed  CAS  Google Scholar 

  108. Rocca M, Valbusa U (1993) Electronic Excitations on Silver Single-Crystal Surfaces. Surface Science, 287, 770–775

    Article  Google Scholar 

  109. Quijada M, Muino RD, Echenique PM (2005) The lifetime of electronic excitations in metal clusters. Nanotechnology, 16 (5), S176–S180

    Article  CAS  Google Scholar 

  110. Quijada M, Borisov AG, Nagy I, Muino RD, Echenique PM (2007) Time-dependent density-functional calculation of the stopping power for protons and antiprotons in metals. Physical Review A, 75 (4), 042902

    Article  CAS  Google Scholar 

  111. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2009) Collective Excitations in Nanoscale Thin Alkali Films: Na/Cu(111). Journal of Nanoscience and Nanotechnology, 9 (6), 3932–3937

    Article  PubMed  CAS  Google Scholar 

  112. Zielasek V, Ronitz N, Henzler M, Pfnur H (2006) Crossover between monopole and ­multipole plasmon of Cs monolayers on Si(111) individually resolved in energy and momentum. Physical Review Letters, 96 (19), 196801

    Article  PubMed  CAS  Google Scholar 

  113. Tsuei KD, Plummer EW, Feibelman PJ (1989) Surface-plasmon dispersion in simple metals. Physical Review Letters, 63 (20), 2256–2259

    Article  PubMed  CAS  Google Scholar 

  114. Tu KN, Mayer JV, Feldman LC (1992) Electronic Thin Films Science. Macmillan, New York

    Google Scholar 

  115. Bendounan A, Fagot Revurat Y, Kierren B, Bertran F, Yurov VY, Malterre D (2002) Surface state in epitaxial Ag ultrathin films on Cu(1 1 1). Surface Science, 496 (1–2), L43–L49

    Article  CAS  Google Scholar 

  116. De Crescenzi M, Piancastelli MN (1996) Electron Scattering and Related Spectroscopies, World Scientific, Singapore

    Book  Google Scholar 

  117. Moresco F, Rocca M, Hildebrandt T, Zielasek V, Henzler M (1999) K adsorption on Ag(110), effect on surface structure and surface electronic excitations. Surface Science, 424 (1), 62–73

    Article  CAS  Google Scholar 

  118. Persson BNJ (1993) Polarizability of small spherical metal particles: influence of the matrix environment. Surface Science, 281 (1–2), 153–162

    Article  CAS  Google Scholar 

  119. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Physical Review B, 48 (24), 18178–18188

    Article  Google Scholar 

  120. Bendounan A, Forster F, Ziroff J, Schmitt F, Reinert F (2005) Influence of the reconstruction in Ag/Cu (111) on the surface electronic structure: Quantitative analysis of the induced band gap. Physical Review B, 72 (7), 075407

    Article  CAS  Google Scholar 

  121. Schiller F, Cordón J, Vyalikh D, Rubio A, Ortega JE (2005) Fermi Gap Stabilization of an Incommensurate Two-Dimensional Superstructure. Physical Review Letters, 94 (1), 016103

    Article  PubMed  CAS  Google Scholar 

  122. Zacharias P, Kliewer KL (1976) Dispersion relation for the 3.8 eV volume plasmon of silver. Solid State Communications, 18 (1), 23–26

    Article  CAS  Google Scholar 

  123. He JH, Carosella CA, Hubler GK, Qadri SB, Sprague JA (2006) Bombardment-Induced Tunable Superlattices in the Growth of Au-Ni Films. Physical Review Letters, 96 (5), 056105

    Article  PubMed  CAS  Google Scholar 

  124. Yuan Z, Gao S (2008) Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model. Surface Science, 602 (2), 460–464

    Article  CAS  Google Scholar 

  125. Chiarello G, Cupolillo A, Caputi LS, Papagno L, Colavita E (1997) Collective and ­single-particle excitations in thin layers of K on Ni(111). Surface Science, 377 (1–3), 365–370

    Article  Google Scholar 

  126. Politano A, Chiarello G (2010) Sputtering-induced modification of the electronic properties of Ag/Cu(111). Journal of Physics D: Applied Physics 43 (8), 085302

    Google Scholar 

  127. Stephanov MA (2009) Non-Gaussian Fluctuations near the QCD Critical Point. Physical Review Letters, 102 (3), 032301

    Article  PubMed  CAS  Google Scholar 

  128. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water. Surface Science, 601 (13), 2656–2659

    Article  CAS  Google Scholar 

  129. Tsuei K-D, Plummer EW, Feibelman PJ (1989) Surface-plasmon dispersion in simple metals. Physical Review Letters, 63 (20), 2256–2259

    Article  PubMed  CAS  Google Scholar 

  130. Silkin VM, Chulkov EV (2006) Energy and lifetime of surface plasmon from first-principles calculations. Vacuum, 81 (2), 186–191

    Article  CAS  Google Scholar 

  131. Bagchi A, Duke CB, Feibelman PJ, Porteus JO (1971) Measurement of surface-plasmon dispersion in aluminum by inelastic low-energy electron diffraction. Physical Review Letters, 27 (15), 998–1001

    Article  CAS  Google Scholar 

  132. Sprunger PT, Watson GM, Plummer EW (1992) The normal modes at the surface of Li and Mg. Surface Science, 269–270, 551–555

    Article  Google Scholar 

  133. Liebsch A, Schaich WL (1995) Influence of a Polarizable Medium on the Nonlocal Optical-Response of a Metal-Surface. Physical Review B, 52 (19), 14219–14234

    Article  CAS  Google Scholar 

  134. Perri S, Lepreti F, Carbone V, Vulpiani A (2007) Position and velocity space diffusion of test particles in stochastic electromagnetic fields. Europhysics Letters, 78 (4), 40003

    Article  CAS  Google Scholar 

  135. Chulkov EV, Silkin VM, Echenique PM (2000) Inverse lifetime of surface states on metals. Surface Science, 454, 458–461

    Article  Google Scholar 

  136. Steeb F, Mathias S, Fischer A, Wiesenmayer M, Aeschlimann M, Bauer M (2009) The nature of a nonlinear excitation pathway from the Shockley surface state as probed by chirped pulse two photon photoemission. New Journal of Physics, 11, 013016

    Article  CAS  Google Scholar 

  137. Bonzel HP, Bradshaw AM, Ertl G (1989) Alkali Adsorption on Metals and Semiconductors, Elsevier, Amsterdam

    Google Scholar 

  138. Palik ED (1985) Handbook of Optical Constants of Solids. Academic Press, New York

    Google Scholar 

  139. Nazarov VU (1999) Multipole surface plasmon excitation enhancement in metals. Physical Review B, 59 (15), 9866–9869

    Article  CAS  Google Scholar 

  140. Tsuei KD, Plummer EW, Liebsch A, Kempa K, Bakshi P (1990) Multipole Plasmon Modes at a Metal-Surface. Physical Review Letters, 64 (1), 44–47

    Article  PubMed  CAS  Google Scholar 

  141. Eremeev SV, Rusina GG, Borisova SD, Chulkov EV (2008) Electron-phonon interaction in the quantum well state of the 1 ML Na/Cu(111) system. Physics of the Solid State, 50 (2), 323–329

    Article  PubMed  CAS  Google Scholar 

  142. Fuyuki M, Watanabe K, Ino D, Petek H, Matsumoto Y (2007) Electron-phonon coupling at an atomically defined interface: Na quantum well on Cu(111). Phys Rev B, 76 (11), 115427

    Article  PubMed  CAS  Google Scholar 

  143. Hoffmann G, Berndt R, Johansson P (2003) STM-induced fluorescence from Na monolayers on Cu(111). Physics of Low-Dimensional Structures, 3-4, 209–219

    Article  PubMed  CAS  Google Scholar 

  144. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2008) Electronic properties of (3/2×3/2)-Na/Cu(111).J Electron Spectrosc Relat Phenom, 162 (1), 25–29

    Article  PubMed  CAS  Google Scholar 

  145. Langer T, Förster DF, Busse C, Michely T, Pfnür H, Tegenkamp C (2011) Sheet plasmons in modulated graphene on Ir(111). New J Phys, 13 (5), 053006

    Article  PubMed  CAS  Google Scholar 

  146. Langer T, Baringhaus J, Pfnür H, Schumacher HW, Tegenkamp C (2010) Plasmon damping below the Landau regime: the role of defects in epitaxial graphene. New J Phys, 12, 033017

    Article  PubMed  CAS  Google Scholar 

  147. Liu Y, Willis RF (2009) The evolution of sheet-plasmon behavior in silver monolayers on Si(111)-(Ö3×Ö3)-Ag surface. Surf Sci, 603 (13), 2115-2119

    Article  PubMed  CAS  Google Scholar 

  148. Pfnür H, Langer T, Baringhaus J, Tegenkamp C (2011) Multiple plasmon excitations in adsorbed two-dimensional systems. J Phys: Condens Matter, 23 (11), 112204

    Article  PubMed  CAS  Google Scholar 

  149. Tegenkamp C, Pfnür H, Langer T, Baringhaus J, Schumacher HW (2011) Plasmon electron–hole resonance in epitaxial graphene. J Phys: Condens Matter, 23 (1), 012001

    Article  PubMed  CAS  Google Scholar 

  150. Politano A, Marino AR, Formoso V, Farías D, Miranda R, Chiarello G (2011) Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys Rev B, 84 (3), 033401

    Article  PubMed  CAS  Google Scholar 

  151. Borca B, Barja S, Garnica M, Minniti M, Politano A, Rodriguez-García JM, Hinarejos JJ, Farías D, Vázquez de Parga AL, Miranda R (2010) Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001). New J Phys, 12 (9), 093018

    Article  PubMed  CAS  Google Scholar 

  152. Politano A, Agostino RG, Colavita E, Formoso V, Tenuta L, Chiarello G (2008) Nature of the alkali surface bond at low coverages investigated by vibrational measurements.J Phys Chem C, 112 (17), 6977-6980

    Article  PubMed  CAS  Google Scholar 

  153. Politano A, Formoso V, Chiarello G (2008) Temperature effects on alkali-promoted CO dissociation on Ni(111). Surf Sci, 602 (12), 2096–2100

    Article  PubMed  CAS  Google Scholar 

  154. Politano A, Formoso V, Chiarello G (2008) Alkali adsorption on Ni(111) and their coadsorption with CO and O. Appl Surf Sci, 254 (21), 6854–6859

    Article  PubMed  CAS  Google Scholar 

  155. Politano A, Formoso V, Chiarello G (2008) Mechanisms Leading to Alkali Oxidation on Metal Surfaces. J Phys Chem C, 112 (46), 17772–17774

    Article  PubMed  CAS  Google Scholar 

  156. Robba D, Ori DM, Sangalli P, Chiarello G, Depero LE, Parmigiani F (1997) A photoelectron spectroscopy study of sub-monolayer V/TiO2(001) interfaces annealed from 300 up to 623 K. Surf Sci, 380 (2–3), 311–323

    Article  PubMed  CAS  Google Scholar 

  157. Caputi LS, Chiarello G, Papagno L (1985) Carbonaceous layers on Ni (110) and (100) studied by AES and EELS. Surf Sci, 162 (1–3), 259–263

    Article  PubMed  CAS  Google Scholar 

  158. De Crescenzi M, Colavita E, Papagno L, Chiarello G, Scarmozzino R, Caputi LS, Rosei R (1983) Electronic properties of Fe80B20 alloys: ordering and disordering effects. J Phys F Met Phys, 13 (4), 895–907

    Article  PubMed  CAS  Google Scholar 

  159. Chiarello G, Robba D, De Michele G, Parmigiani F (1993) An X-ray Photoelectron-Spectroscopy Study of the Vanadia Titania Catalysts. Appl Surf Sci, 64 (2), 91–96

    Article  PubMed  CAS  Google Scholar 

  160. Ciambelli P, Bagnasco G, Lisi L, Turco M, Chiarello G, Musci M, Notaro M, Robba D, Ghetti P (1992) Vanadium-Oxide Catalysts Supported on Laser-Synthesized Titania Powders - Characterization and Catalytic Activity in the Selective Reduction of Nitric-Oxide. Appl Catal B Environ, 1 (2), 61–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Dr. Stefan Mathias and Prof. Michael Bauer for having allowed to use their photoemission data, and, moreover, dr. Vincenzo Formoso for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Politano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Politano, A., Chiarello, G. (2012). Influence of Electron Quantum Confinement on the Electronic Response of Metal/Metal Interfaces. In: Geddes, C. (eds) Reviews in Plasmonics 2010. Reviews in Plasmonics, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0884-0_3

Download citation

Publish with us

Policies and ethics