Influence of Electron Quantum Confinement on the Electronic Response of Metal/Metal Interfaces

Part of the Reviews in Plasmonics book series (RIP, volume 2010)


Herein we report on high-resolution electron energy loss spectroscopy (HREELS) measurements on surface plasmon dispersion in systems exhibiting quantum well states (QWS), i.e., Na/Cu(111), Ag/Cu(111), and Ag/Ni(111). Our results demonstrate that the dominant coefficient of surface plasmon dispersion for thin and layer-by-layer Ag films presenting QWS is quadratic even at small q, in contrast with previous measurements on Ag semi-infinite media and Ag thin films deposited on Si(111). We suggest that this behavior is due to screening effects enhanced by the presence of QWS shifting the position of the centroid of the induced charge less inside the geometrical surface compared to Ag surfaces and Ag/Si(111). For ultrathin Ag films, i.e., two layers, the dispersion was found to be not positive, as theoretically predicted. Annealing of the Ag film caused an enhancement of the free-electron character of the QWS, thus inducing a negative linear term of the dispersion curve of the surface plasmon. Moreover, we report the first experimental evidence of chemical interface damping in thin films for K/Ag/Ni(111). As regards Na/Cu(111), we found a different dispersion curve compared to thick Na films, thus confirming the enhanced screening by Na QWS.Results reported here should shed light on the influence of QWS on dynamical screening phenomena in thin films.


Dispersion Curve Quantum Well State Surface Plasmon Peak Primary Beam Energy Surface Plasmon Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We want to thank Dr. Stefan Mathias and Prof. Michael Bauer for having allowed to use their photoemission data, and, moreover, dr. Vincenzo Formoso for many helpful discussions.


  1. 1.
    Valla T, Kralj M, Siber A, Milun M, Pervan P, Johnson PD, Woodruff DP (2000) Oscillatory electron-phonon coupling in ultra-thin silver films on V(100). Journal of Physics: Condensed Matter, 12 (28), L477–L482CrossRefGoogle Scholar
  2. 2.
    Politano A, Formoso V, Chiarello G (2009) Chemical Reactions at Clean and Alkali-Doped Mismatched Metal/Metal Interfaces. Journal of Physical Chemistry C, 113 (1), 316–320CrossRefGoogle Scholar
  3. 3.
    Wei CM, Chou MY (2002) Theory of quantum size effects in thin Pb(111) films. Physical Review B, 66 (23), 233408CrossRefGoogle Scholar
  4. 4.
    Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): Dependence of water reactivity as a function of Na coverage. The Journal of Chemical Physics, 126 (24), 244712PubMedCrossRefGoogle Scholar
  5. 5.
    Luh DA, Miller T, Paggel JJ, Chiang TC (2002) Large electron-phonon coupling at an interface. Physical Review Letters, 88 (25), 256802PubMedCrossRefGoogle Scholar
  6. 6.
    Pfennigstorf O, Petkova A, Guenter HL, Henzler M (2002) Conduction mechanism in ultrathin metallic films. Physical Review B, 65 (4), 045412CrossRefGoogle Scholar
  7. 7.
    Orr BG, Jaeger HM, Goldman AM (1984) Transition-Temperature Oscillations in Thin Superconducting Films. Physical Review Letters, 53 (21), 2046Google Scholar
  8. 8.
    Chiang T-C (2004) PHYSICS: Superconductivity in Thin Films. Science, 306 (5703), 1900–1901PubMedCrossRefGoogle Scholar
  9. 9.
    Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2008) Purely quadratic ­dispersion of surface plasmon in Ag/Ni(111): the influence of electron confinement. Physica Status Solidi-Rapid Research Letters, 2 (2), 86–88CrossRefGoogle Scholar
  10. 10.
    Yu YH, Tang Z, Jiang Y, Wu KH, Wang EG (2006) Thickness dependence of the surface plasmon dispersion in ultrathin aluminum films on silicon. Surface Science, 600 (22), 4966–4971CrossRefGoogle Scholar
  11. 11.
    Pitarke JM, Nazarov VU, Silkin VM, Chulkov EV, Zaremba E, Echenique PM (2004) Theory of acoustic surface plasmons. Physical Review B, 70 (20), 205403Google Scholar
  12. 12.
    Bastidas CL, Liebsch A, Mochan RL (2001) Influence of d electrons on the dispersion ­relation of Ag surface plasmons for different single-crystal faces. Physical Review B, 63 (16), 165407CrossRefGoogle Scholar
  13. 13.
    Liebsch A (1998) Prediction of a Ag multipole surface plasmon. Physical Review B, 57 (7), 3803–3806CrossRefGoogle Scholar
  14. 14.
    Kim JS, Chen LM, Kesmodel LL, GarciaGonzalez P, Liebsch A (1997) Surface plasmon dispersion of Cl/Ag(111). Physical Review B, 56 (8), R4402–R4405CrossRefGoogle Scholar
  15. 15.
    Politano A, Formoso V, Chiarello G (2009) Dispersion and damping of surface plasmon in Ag thin films grown on Cu(111) and Ni(111). Superlattices and Microstructures, 46 (1–2), 137–140CrossRefGoogle Scholar
  16. 16.
    Politano A, Formoso V, Chiarello G (2009) Damping of the surface plasmon in clean and K-modified Ag thin films. Journal of Electron Spectroscopy and related Phenomena, 173 (1), 12–17CrossRefGoogle Scholar
  17. 17.
    Politano A, Formoso V, Chiarello G (2008) Dispersion and Damping of Gold Surface Plasmon. Plasmonics, 3 (4), 165–170CrossRefGoogle Scholar
  18. 18.
    Yu YH, Jiang Y, Tang Z, Guo QL, Jia JF, Xue QK, Wu KH, Wang EG (2005) Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films. Physical Review B, 72 (20), 205405CrossRefGoogle Scholar
  19. 19.
    Savio L, Vattuone L, Rocca M (2003) Surface plasmon dispersion on sputtered and ­nanostructured Ag(001). Physical Review B, 67 (4), 045406CrossRefGoogle Scholar
  20. 20.
    Rocca M, Moresco F (1996) HREELS and ELS-LEED studies of surface plasmons on Ag and Pd single crystals. Progress in Surface Science, 53 (2–4), 331–340CrossRefGoogle Scholar
  21. 21.
    Moresco F, Rocca M, Zielasek V, Hildebrandt T, Henzler M (1997) ELS-LEED study of the surface plasmon dispersion on Ag surfaces. Surface Science, 388 (1–3), 1–4CrossRefGoogle Scholar
  22. 22.
    Savio L, Vattuone L, Rocca M (2000) Effect of surface interband transitions on surface ­plasmon dispersion: O/Ag(001). Physical Review B, 61 (11), 7324–7327CrossRefGoogle Scholar
  23. 23.
    Chiarello G, Formoso V, Santaniello A, Colavita E, Papagno L (2000) Surface-plasmon ­dispersion and multipole surface plasmons in Al(111). Physical Review B, 62 (19), 12676–12679CrossRefGoogle Scholar
  24. 24.
    Moresco F, Rocca M, Hildebrandt T, Zielasek V, Henzler M (1998) Influence of surface interband transitions on surface plasmon dispersion: K/Ag(110). Europhysics Letters, 43 (4), 433–438CrossRefGoogle Scholar
  25. 25.
    Kevan SD (1983) Evidence for a New Broadening Mechanism in Angle-Resolved Photoemission from Cu(111). Physical Review Letters, 50 (7), 526CrossRefGoogle Scholar
  26. 26.
    Tang SJ, Jeng HT, Ismail, Sprunger PT, Plummer EW (2009) Surface electronic band structure and temperature dependence of the surface state at Ā on Mg (10 1– 0) surface. Physical Review B, 80 (8), 085419Google Scholar
  27. 27.
    Sklyadneva IY, Heid R, Silkin VM, Melzer A, Bohnen KP, Echenique PM, Fauster T, Chulkov EV (2009) Unusually weak electron-phonon coupling in the Shockley surface state on Pd(111). Physical Review B, 80 (4), 045429Google Scholar
  28. 28.
    Scheybal A, Müller K, Bertschinger R, Wahl M, Bendounan A, Aebi P, Jung TA (2009) Modification of the Cu(110) Shockley surface state by an adsorbed pentacene monolayer. Physical Review B, 79 (11), 115406Google Scholar
  29. 29.
    Nishimura Y, Kakeya M, Higashiguchi M, Kimura A, Taniguchi M, Narita H, Cui Y, Nakatake M, Shimada K, Namatame H (2009) Surface electronic structures of ferromagnetic Ni(111) studied by STM and angle-resolved photoemission. Physical Review B, 79 (24), 245402Google Scholar
  30. 30.
    Mulazzi M, Rossi G, Braun J, Minár J, Ebert H, Panaccione G, Vobornik I, Fujii J (2009) Understanding intensities of angle-resolved photoemission with circularly polarized radiation from a Cu(111) surface state. Physical Review B, 79 (16), 165421CrossRefGoogle Scholar
  31. 31.
    Kowalczyk PJ (2009) Investigation of STM tip influence on the recorded position of the Shockley surface state on Au(1 1 1). Surface Science, 603 (5), 747–751CrossRefGoogle Scholar
  32. 32.
    Braun KF, Hla SW (2009) Inelastic quasiparticle lifetimes of the Shockley surface state band on Ni(111). Applied Physics A: Materials Science and Processing, 98 (3), 583–588Google Scholar
  33. 33.
    Scheybal A, Müller K, Bertschinger R, Wahl M, Bendounan A, Aebi P, Jung TA (2009) Modification of the Cu(110) Shockley surface state by an adsorbed pentacene monolayer. Physical Review B, 79 (11), 115406CrossRefGoogle Scholar
  34. 34.
    Nishimura Y, Kakeya M, Higashiguchi M, Kimura A, Taniguchi M, Narita H, Cui Y, Nakatake M, Shimada K, Namatame H (2009) Surface electronic structures of ferromagnetic Ni(111) studied by STM and angle-resolved photoemission. Physical Review B, 79 (24), 245402CrossRefGoogle Scholar
  35. 35.
    Mulazzi M, Rossi G, Braun J, Minár J, Ebert H, Panaccione G, Vobornik I, Fujii J (2009) Understanding intensities of angle-resolved photoemission with circularly polarized radiation from a Cu(111) surface state. Physical Review B - Condensed Matter and Materials Physics, 79 (16), 165421Google Scholar
  36. 36.
    Kowalczyk PJ (2009) Investigation of STM tip influence on the recorded position of the Shockley surface state on Au(111). Surface Science, 603 (5), 747–751CrossRefGoogle Scholar
  37. 37.
    Nuber A, Higashiguchi M, Forster F, Blaha P, Shimada K, Reinert F (2008) Influence of reconstruction on the surface state of Au(110). Physical Review B, 78 (19), 195412CrossRefGoogle Scholar
  38. 38.
    Kowalczyk PJ, Puchalski M, Kozłowski W, Dabrowski P, Klusek Z, Olejniczak W (2008) Investigation of the Shockley surface state on clean and air-exposed Au (1 1 1). Applied Surface Science, 254 (15), 4572–4576CrossRefGoogle Scholar
  39. 39.
    Vergniory MG, Pitarke JM, Echenique PM (2007) Self-energy and lifetime of Shockley and image states on Cu(100) and Cu(111): Beyond the GW approximation of many-body theory. Physical Review B, 76 (24), 245416CrossRefGoogle Scholar
  40. 40.
    Higashiguchi M, Shimada K, Arita M, Miura Y, Tobita N, Cui X, Aiura Y, Namatame H, Taniguchi M (2007) High-resolution angle-resolved photoemission study of Ni(1 1 1) surface state. Surface Science, 601 (18), 4005–4009CrossRefGoogle Scholar
  41. 41.
    Schiller F, Laubschat C (2006) Surface states at close-packed surfaces of simple metals. Physical Review B, 74 (8), 085109CrossRefGoogle Scholar
  42. 42.
    Caravati S, Butti G, Brivio GP, Trioni MI, Pagliara S, Ferrini G, Galimberti G, Pedersoli E, Giannetti C, Parmigiani F (2006) Cu(111) and Cu(001) surface electronic states. Comparison between theory and experiment. Surface Science, 600 (18), 3901–3905Google Scholar
  43. 43.
    Zhang X, Liu J, Li B, Wang K, Ming F, Wang J, Xiao X (2010) Effect of substrate doping concentration on quantum well states of Pb island grown on Si(1 1 1). Surface Science, 604 (2), 175–180CrossRefGoogle Scholar
  44. 44.
    Trontl VM, Pervan P, Milun M (2009) Growth and electronic properties of ultra-thin Ag films on Ni(111). Surface Science, 603 (1), 125–130CrossRefGoogle Scholar
  45. 45.
    Sawa K, Aoki Y, Hirayama H (2009) Thickness dependence of Shockley-type surface states of Ag(111) ultrathin films on Si (111) 7×7 substrates. Physical Review B, 80 (3), 035428CrossRefGoogle Scholar
  46. 46.
    Rybkin AG, Shikin AM, Adamchuk VK (2009) Spectra of quantum states in thin metal films and their modification: Al/ W(110) system. Bulletin of the Russian Academy of Sciences: Physics, 73 (5), 683–685CrossRefGoogle Scholar
  47. 47.
    Pervan P, Milun M (2009) Photoemission from 2D metallic quantum wells. Surface Science, 603 (10–12), 1378–1388CrossRefGoogle Scholar
  48. 48.
    Okuda T, Takeichi Y, He K, Harasawa A, Kakizaki A, Matsuda I (2009) Substrate dependence of anisotropic electronic structure in Ag(111) quantum film studied by angle-resolved photoelectron spectroscopy. Physical Review B, 80 (11), 113409CrossRefGoogle Scholar
  49. 49.
    Lin X, Nilius N, Freund HJ, Walter M, Frondelius P, Honkala K, Häkkinen H (2009) Quantum well states in two-dimensional gold clusters on MgO thin films. Physical Review Letters, 102 (20), 206801PubMedCrossRefGoogle Scholar
  50. 50.
    Choi J, Wu J, El Gabaly F, Schmid AK, Hwang C, Qiu ZQ (2009) Quantum well states in Au/Ru(0001) and their effect on the magnetic properties of a Co overlayer. New Journal of Physics, 11, 043016CrossRefGoogle Scholar
  51. 51.
    Wang LL, Ma XC, Ji SH, Fu YS, Shen QT, Jia JF, Kelly KF, Xue QK (2008) Epitaxial growth and quantum well states study of Sn thin films on Sn induced Si(111)- (23×23) R30° surface. Physical Review B, 77 (20), 205410CrossRefGoogle Scholar
  52. 52.
    Tang SJ, Chang WK, Chiu YM, Chen HY, Cheng CM, Tsuei KD, Miller T, Chiang TC (2008) Enhancement of subband effective mass in Ag/Ge(111) thin film quantum wells. Physical Review B, 78 (24), 245407CrossRefGoogle Scholar
  53. 53.
    Pletikosić I, Trontl VM, Milun M, Okević D, Brako R, Pervan P (2008) D-band quantum well states in Ag(111) monolayer films; Substrate-induced shifts. Journal of Physics: Condensed Matter, 20 (35), 355004CrossRefGoogle Scholar
  54. 54.
    Miyata N, Horikoshi K, Hirahara T, Hasegawa S, Wei CM, Matsuda I (2008) Electronic transport properties of quantum-well states in ultrathin Pb (111) films. Physical Review B, 78 (24), 245405CrossRefGoogle Scholar
  55. 55.
    He K, Hirahara T, Okuda T, Hasegawa S, Kakizaki A, Matsuda I (2008) Spin polarization of quantum well states in Ag films induced by the Rashba effect at the surface. Physical Review Letters, 101 (10), 107604PubMedCrossRefGoogle Scholar
  56. 56.
    Algdal J, Balasubramanian T, Breitholtz M, Chis V, Hellsing B, Lindgren SÅ, Walldén L (2008) Sodium and potassium monolayers on Be(0001) investigated by photoemission and electronic structure calculations. Physical Review B, 78 (8), 085102Google Scholar
  57. 57.
    Mathias S, Wessendorf M, Passlack S, Aeschlimann M, Bauer M (2006) Morphological modifications of Ag/Cu(111) probed by photoemission spectroscopy of quantum well states and the Shockley surface state. Applied Physics A: Materials Science and Processing, 82 (3), 439–445CrossRefGoogle Scholar
  58. 58.
    Luh D-A, Cheng C-M, Tsai C-T, Tsuei K-D, Tang J-M (2008) Transition from Disorder to Order in Thin Metallic Films Studied with Angle-Resolved Photoelectron Spectroscopy. Physical Review Letters, 100 (2), 027603PubMedCrossRefGoogle Scholar
  59. 59.
    Politano A, Agostino RG, Formoso V, Chiarello G (2008) Short-range interactions in Na coadsorption with CO and O on Ni(111). Chemphyschem, 9 (8), 1189–1194PubMedCrossRefGoogle Scholar
  60. 60.
    Politano A, Agostino RG, Colavita E, Formoso V, Tenuta L, Chiarello G (2008) Nature of the alkali surface bond at low coverages investigated by vibrational measurements. Journal of Physical Chemistry C, 112 (17), 6977–6980CrossRefGoogle Scholar
  61. 61.
    Politano A, Formoso V, Chiarello G (2008) Mechanisms Leading to Alkali Oxidation on Metal Surfaces. Journal of Physical Chemistry C, 112 (46), 17772–17774CrossRefGoogle Scholar
  62. 62.
    Politano A, Formoso V, Chiarello G (2009) Effects of O adsorption on the Na + CO/Ni(111) system. Superlattices and Microstructures, 46 (1–2), 10–13CrossRefGoogle Scholar
  63. 63.
    Chiarello G, Barberi R, Amoddeo A, Caputi LS, Colavita E (1996) XPS and AFM characterization of a vanadium oxide film on TiO2(100) surface. Applied Surface Science, 99 (1), 15–19CrossRefGoogle Scholar
  64. 64.
    Rocca M, Biggio F, Valbusa U (1990) Surface-plasmon spectrum of Ag(001) measured by high-resolution angle-resolved electron-energy-loss spectroscopy. Physical Review B, 42 (5), 2835–2841CrossRefGoogle Scholar
  65. 65.
    Marini A, Del Sole R, Onida G (2002) First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation. Physical Review B, 66 (11), 1151011CrossRefGoogle Scholar
  66. 66.
    Liebsch A (1997) Electronic Excitations at Metal Surfaces, Plenum, New YorkGoogle Scholar
  67. 67.
    Li YB, Levi AC, Rocca M (1995) Anisotropy of Surface-Plasmons in Metals. Surface Science, 336 (3), 371–376CrossRefGoogle Scholar
  68. 68.
    Rocca M (1995) Low-Energy Eels Investigation of Surface Electronic Excitations on Metals. Surface Science Reports, 22 (1–2), 1–71CrossRefGoogle Scholar
  69. 69.
    Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 70, 1–87CrossRefGoogle Scholar
  70. 70.
    Politano A, Chiarello G (2009) Tuning the lifetime of the surface plasmon upon sputtering. Physica Status Solidi-Rapid Research Letters, 3 (5), 136–138CrossRefGoogle Scholar
  71. 71.
    Politano A, Formoso V, Chiarello G (2009) Annealing effects on the plasmonic excitations of metal/metal interfaces. Applied Surface Science, 255 (11), 6038–6042CrossRefGoogle Scholar
  72. 72.
    Politano A, Formoso V, Chiarello G (2009) Electronic properties of metallic bilayers ­deposited on Cu(111): A comparative study. Surface Science, 603 (6), 933–937CrossRefGoogle Scholar
  73. 73.
    Politano A, Formoso V, Chiarello G (2009) Interference effects in the excitation of collective electronic modes in nanoscale thin Ag films. Superlattices and Microstructures, 46 (1–2), 166–170CrossRefGoogle Scholar
  74. 74.
    Politano A, Formoso V, Colavita E, Chiarello G (2009) Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111). Physical Review B, 79 (4), 045426CrossRefGoogle Scholar
  75. 75.
    Fujikawa Y, Sakurai T, Tromp RM (2008) Surface Plasmon Microscopy Using an Energy-Filtered Low Energy Electron Microscope. Physical Review Letters, 100 (12), 126803PubMedCrossRefGoogle Scholar
  76. 76.
    Moresco F, Rocca M, Hildebrandt T, Henzler M (1999) Plasmon confinement in ultrathin continuous Ag films. Physical Review Letters, 83 (11), 2238–2241CrossRefGoogle Scholar
  77. 77.
    Chelaru LI, Meyer zu Heringdorf FJ (2007) In situ monitoring of surface plasmons in ­single-crystalline Ag-nanowires. Surface Science, 601 (18), 4541–4545Google Scholar
  78. 78.
    Lazzari R, Jupille J, Layet JM (2003) Electron-energy-loss channels and plasmon confinement in supported silver particles. Physical Review B, 68 (4), 454281–4542811CrossRefGoogle Scholar
  79. 79.
    Nilius N, Ernst N, Freund HJ (2000) Photon Emission Spectroscopy of Individual ­Oxide-Supported Silver Clusters in a Scanning Tunneling Microscope. Physical Review Letters, 84 (17), 3994–3997PubMedCrossRefGoogle Scholar
  80. 80.
    Varykhalov A, Shikin AM, Gudat W, Moras P, Grazioli C, Carbone C, Rader O (2005) Probing the Ground State Electronic Structure of a Correlated Electron System by Quantum Well States: Ag/Ni(111). Physical Review Letters, 95 (24), 247601PubMedCrossRefGoogle Scholar
  81. 81.
    Mróz S, Jankowski Z (1995) Properties of ultrathin silver layers on the Ni(111) face. Surface Science, 322 (1–3), 133–139CrossRefGoogle Scholar
  82. 82.
    Mróz S, Jankowski Z, Nowicki M (2000) Growth and isothermal desorption of ultrathin ­silver layers on the Ni(111) face at the substrate temperature from 180 to 900 K. Surface Science, 454 (1), 702–706CrossRefGoogle Scholar
  83. 83.
    Mróz S (1995) Directional elastic peak and directional Auger electron spectroscopies - New tools for investigating surface-layer atomic structure. Progress in Surface Science, 48 (1–4), 157–166CrossRefGoogle Scholar
  84. 84.
    Politano A, Chiarello G, Formoso V, Agostino RG, Colavita E (2006) Plasmon of Shockley surface states in Cu(111) : A high-resolution electron energy loss spectroscopy study. Physical Review B, 74 (8), 081401CrossRefGoogle Scholar
  85. 85.
    Borensztein Y, Roy M, Alameh R (1995) Threshold and Linear Dispersion of the Plasma Resonance in Thin Ag Films. EPL (Europhysics Letters), 31 (5–6), 311CrossRefGoogle Scholar
  86. 86.
    Politano A, Formoso V, Chiarello G (2010) Plasmonic Modes Confined in Nanoscale Thin Silver Films Deposited onto Metallic Substrates Journal of Nanoscience and Nanotechnology, 10 (2), 1313–1321PubMedCrossRefGoogle Scholar
  87. 87.
    Suto S, Tsuei KD, Plummer EW, Burstein E (1989) Surface-plasmon energy and dispersion on Ag single crystals. Physical Review Letters, 63 (23), 2590–2593PubMedCrossRefGoogle Scholar
  88. 88.
    Rocca M, Lazzarino M, Valbusa U (1991) Surface-Plasmon Energy and Dispersion on Ag Single-Crystals - Comment. Physical Review Letters, 67 (22), 3197–3197PubMedCrossRefGoogle Scholar
  89. 89.
    Lee G, Sprunger PT, Plummer EW, Suto S (1991) Lee et al. reply. Physical Review Letters, 67 (22), 3198PubMedCrossRefGoogle Scholar
  90. 90.
    Feibelman PJ (1982) Surface electromagnetic fields. Progress in Surface Science, 12 (4), 287–407CrossRefGoogle Scholar
  91. 91.
    Feibelman PJ (1973) Sensitivity of surface plasmon dispersion and damping to alkali ­adsorption. Surface Science, 40 (1), 102–108CrossRefGoogle Scholar
  92. 92.
    Feibelman PJ (1974) Microscopic calculation of surface-plasmon dispersion and damping. Physical Review B, 9 (12), 5077–5098CrossRefGoogle Scholar
  93. 93.
    Feibelman PJ (1993) Perturbation of surface plasmon dispersion by “extra” electrons near a surface. Surface Science Letters, 282 (1–2), 129–136Google Scholar
  94. 94.
    Feibelman PJ (1994) Comment on Surface plasmon dispersion of Ag. Physical Review Letters, 72 (5), 788PubMedCrossRefGoogle Scholar
  95. 95.
    Feibelman PJ (1989) Interpretation of the linear coefficient of surface-plasmon dispersion. Physical Review B, 40 (5), 2752–2756CrossRefGoogle Scholar
  96. 96.
    Feibelman PJ (1973) Sensitivity of surface-plasmon dispersion and damping to potential ­barrier shape. Physical Review Letters, 30 (20), 975–978CrossRefGoogle Scholar
  97. 97.
    Feibelman PJ (1971) Dependence of the normal modes of plasma oscillation at a bimetallic interface on the electron density profile. Physical Review B, 3 (9), 2974–2982CrossRefGoogle Scholar
  98. 98.
    Feibelman PJ, Tsuei KD (1990) Negative surface-plasmon dispersion coefficient: A physically illustrative, exact formula. Physical Review B, 41 (12), 8519–8521CrossRefGoogle Scholar
  99. 99.
    Rocca M, Lazzarino M, Valbusa U (1992) Surface-Plasmon on Ag(110) - Observation of Linear and Positive Dispersion and Strong Azimuthal Anisotropy. Physical Review Letters, 69 (14), 2122–2125PubMedCrossRefGoogle Scholar
  100. 100.
    Silkin VM, Quijada M, Muino RD, Chulkov EV, Echenique PM (2007) Dynamic screening and electron-electron scattering in low-dimensional metallic systems. Surface Science, 601 (18), 4546–4552CrossRefGoogle Scholar
  101. 101.
    Silkin VM, Quijada M, Vergniory MG, Alducin M, Borisov AG, Muino RD, Juaristi JI, Sanchez-Portal D, Chulkov EV, Echenique PM (2007) Dynamic screening and electron dynamics in low-dimensional metal systems. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 258 (1), 72–78CrossRefGoogle Scholar
  102. 102.
    Chiang TC (2000) Photoemission studies of quantum well states in thin films. Surface Science Reports, 39 (7–8), 181–235CrossRefGoogle Scholar
  103. 103.
    Tsuei KD, Plummer EW, Liebsch A, Pehlke E, Kempa K, Bakshi P (1991) The Normal-Modes at the Surface of Simple Metals. Surface Science, 247 (2–3), 302–326CrossRefGoogle Scholar
  104. 104.
    Rocca M, Lazzarino M, Valbusa U (1992) Plasmon Damping and Surface Interband-Transitions on Ag(001) and (011). Surface Science, 270, 560–562CrossRefGoogle Scholar
  105. 105.
    Rocca M, Li YB, Demongeot FB, Valbusa U (1995) Surface-Plasmon Dispersion and Damping on Ag(111). Physical Review B, 52 (20), 14947–14953CrossRefGoogle Scholar
  106. 106.
    Rocca M, Moresco F, Valbusa U (1992) Temperature-Dependence of Surface-Plasmons on Ag(001). Physical Review B, 45 (3), 1399–1402CrossRefGoogle Scholar
  107. 107.
    Rocca M, Valbusa U (1990) Angular-Dependence of Dipole Scattering Cross-Section - Surface-Plasmon Losses on Ag(100). Physical Review Letters, 64 (20), 2398–2401PubMedCrossRefGoogle Scholar
  108. 108.
    Rocca M, Valbusa U (1993) Electronic Excitations on Silver Single-Crystal Surfaces. Surface Science, 287, 770–775CrossRefGoogle Scholar
  109. 109.
    Quijada M, Muino RD, Echenique PM (2005) The lifetime of electronic excitations in metal clusters. Nanotechnology, 16 (5), S176–S180CrossRefGoogle Scholar
  110. 110.
    Quijada M, Borisov AG, Nagy I, Muino RD, Echenique PM (2007) Time-dependent density-functional calculation of the stopping power for protons and antiprotons in metals. Physical Review A, 75 (4), 042902CrossRefGoogle Scholar
  111. 111.
    Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2009) Collective Excitations in Nanoscale Thin Alkali Films: Na/Cu(111). Journal of Nanoscience and Nanotechnology, 9 (6), 3932–3937PubMedCrossRefGoogle Scholar
  112. 112.
    Zielasek V, Ronitz N, Henzler M, Pfnur H (2006) Crossover between monopole and ­multipole plasmon of Cs monolayers on Si(111) individually resolved in energy and momentum. Physical Review Letters, 96 (19), 196801PubMedCrossRefGoogle Scholar
  113. 113.
    Tsuei KD, Plummer EW, Feibelman PJ (1989) Surface-plasmon dispersion in simple metals. Physical Review Letters, 63 (20), 2256–2259PubMedCrossRefGoogle Scholar
  114. 114.
    Tu KN, Mayer JV, Feldman LC (1992) Electronic Thin Films Science. Macmillan, New YorkGoogle Scholar
  115. 115.
    Bendounan A, Fagot Revurat Y, Kierren B, Bertran F, Yurov VY, Malterre D (2002) Surface state in epitaxial Ag ultrathin films on Cu(1 1 1). Surface Science, 496 (1–2), L43–L49CrossRefGoogle Scholar
  116. 116.
    De Crescenzi M, Piancastelli MN (1996) Electron Scattering and Related Spectroscopies, World Scientific, SingaporeCrossRefGoogle Scholar
  117. 117.
    Moresco F, Rocca M, Hildebrandt T, Zielasek V, Henzler M (1999) K adsorption on Ag(110), effect on surface structure and surface electronic excitations. Surface Science, 424 (1), 62–73CrossRefGoogle Scholar
  118. 118.
    Persson BNJ (1993) Polarizability of small spherical metal particles: influence of the matrix environment. Surface Science, 281 (1–2), 153–162CrossRefGoogle Scholar
  119. 119.
    Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Physical Review B, 48 (24), 18178–18188CrossRefGoogle Scholar
  120. 120.
    Bendounan A, Forster F, Ziroff J, Schmitt F, Reinert F (2005) Influence of the reconstruction in Ag/Cu (111) on the surface electronic structure: Quantitative analysis of the induced band gap. Physical Review B, 72 (7), 075407CrossRefGoogle Scholar
  121. 121.
    Schiller F, Cordón J, Vyalikh D, Rubio A, Ortega JE (2005) Fermi Gap Stabilization of an Incommensurate Two-Dimensional Superstructure. Physical Review Letters, 94 (1), 016103PubMedCrossRefGoogle Scholar
  122. 122.
    Zacharias P, Kliewer KL (1976) Dispersion relation for the 3.8 eV volume plasmon of silver. Solid State Communications, 18 (1), 23–26CrossRefGoogle Scholar
  123. 123.
    He JH, Carosella CA, Hubler GK, Qadri SB, Sprague JA (2006) Bombardment-Induced Tunable Superlattices in the Growth of Au-Ni Films. Physical Review Letters, 96 (5), 056105PubMedCrossRefGoogle Scholar
  124. 124.
    Yuan Z, Gao S (2008) Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model. Surface Science, 602 (2), 460–464CrossRefGoogle Scholar
  125. 125.
    Chiarello G, Cupolillo A, Caputi LS, Papagno L, Colavita E (1997) Collective and ­single-particle excitations in thin layers of K on Ni(111). Surface Science, 377 (1–3), 365–370CrossRefGoogle Scholar
  126. 126.
    Politano A, Chiarello G (2010) Sputtering-induced modification of the electronic properties of Ag/Cu(111). Journal of Physics D: Applied Physics 43 (8), 085302Google Scholar
  127. 127.
    Stephanov MA (2009) Non-Gaussian Fluctuations near the QCD Critical Point. Physical Review Letters, 102 (3), 032301PubMedCrossRefGoogle Scholar
  128. 128.
    Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water. Surface Science, 601 (13), 2656–2659CrossRefGoogle Scholar
  129. 129.
    Tsuei K-D, Plummer EW, Feibelman PJ (1989) Surface-plasmon dispersion in simple metals. Physical Review Letters, 63 (20), 2256–2259PubMedCrossRefGoogle Scholar
  130. 130.
    Silkin VM, Chulkov EV (2006) Energy and lifetime of surface plasmon from first-principles calculations. Vacuum, 81 (2), 186–191CrossRefGoogle Scholar
  131. 131.
    Bagchi A, Duke CB, Feibelman PJ, Porteus JO (1971) Measurement of surface-plasmon dispersion in aluminum by inelastic low-energy electron diffraction. Physical Review Letters, 27 (15), 998–1001CrossRefGoogle Scholar
  132. 132.
    Sprunger PT, Watson GM, Plummer EW (1992) The normal modes at the surface of Li and Mg. Surface Science, 269–270, 551–555CrossRefGoogle Scholar
  133. 133.
    Liebsch A, Schaich WL (1995) Influence of a Polarizable Medium on the Nonlocal Optical-Response of a Metal-Surface. Physical Review B, 52 (19), 14219–14234CrossRefGoogle Scholar
  134. 134.
    Perri S, Lepreti F, Carbone V, Vulpiani A (2007) Position and velocity space diffusion of test particles in stochastic electromagnetic fields. Europhysics Letters, 78 (4), 40003CrossRefGoogle Scholar
  135. 135.
    Chulkov EV, Silkin VM, Echenique PM (2000) Inverse lifetime of surface states on metals. Surface Science, 454, 458–461CrossRefGoogle Scholar
  136. 136.
    Steeb F, Mathias S, Fischer A, Wiesenmayer M, Aeschlimann M, Bauer M (2009) The nature of a nonlinear excitation pathway from the Shockley surface state as probed by chirped pulse two photon photoemission. New Journal of Physics, 11, 013016CrossRefGoogle Scholar
  137. 137.
    Bonzel HP, Bradshaw AM, Ertl G (1989) Alkali Adsorption on Metals and Semiconductors, Elsevier, AmsterdamGoogle Scholar
  138. 138.
    Palik ED (1985) Handbook of Optical Constants of Solids. Academic Press, New YorkGoogle Scholar
  139. 139.
    Nazarov VU (1999) Multipole surface plasmon excitation enhancement in metals. Physical Review B, 59 (15), 9866–9869CrossRefGoogle Scholar
  140. 140.
    Tsuei KD, Plummer EW, Liebsch A, Kempa K, Bakshi P (1990) Multipole Plasmon Modes at a Metal-Surface. Physical Review Letters, 64 (1), 44–47PubMedCrossRefGoogle Scholar
  141. 141.
    Eremeev SV, Rusina GG, Borisova SD, Chulkov EV (2008) Electron-phonon interaction in the quantum well state of the 1 ML Na/Cu(111) system. Physics of the Solid State, 50 (2), 323–329PubMedCrossRefGoogle Scholar
  142. 142.
    Fuyuki M, Watanabe K, Ino D, Petek H, Matsumoto Y (2007) Electron-phonon coupling at an atomically defined interface: Na quantum well on Cu(111). Phys Rev B, 76 (11), 115427PubMedCrossRefGoogle Scholar
  143. 143.
    Hoffmann G, Berndt R, Johansson P (2003) STM-induced fluorescence from Na monolayers on Cu(111). Physics of Low-Dimensional Structures, 3-4, 209–219PubMedCrossRefGoogle Scholar
  144. 144.
    Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2008) Electronic properties of (3/2×3/2)-Na/Cu(111).J Electron Spectrosc Relat Phenom, 162 (1), 25–29PubMedCrossRefGoogle Scholar
  145. 145.
    Langer T, Förster DF, Busse C, Michely T, Pfnür H, Tegenkamp C (2011) Sheet plasmons in modulated graphene on Ir(111). New J Phys, 13 (5), 053006PubMedCrossRefGoogle Scholar
  146. 146.
    Langer T, Baringhaus J, Pfnür H, Schumacher HW, Tegenkamp C (2010) Plasmon damping below the Landau regime: the role of defects in epitaxial graphene. New J Phys, 12, 033017PubMedCrossRefGoogle Scholar
  147. 147.
    Liu Y, Willis RF (2009) The evolution of sheet-plasmon behavior in silver monolayers on Si(111)-(Ö3×Ö3)-Ag surface. Surf Sci, 603 (13), 2115-2119PubMedCrossRefGoogle Scholar
  148. 148.
    Pfnür H, Langer T, Baringhaus J, Tegenkamp C (2011) Multiple plasmon excitations in adsorbed two-dimensional systems. J Phys: Condens Matter, 23 (11), 112204PubMedCrossRefGoogle Scholar
  149. 149.
    Tegenkamp C, Pfnür H, Langer T, Baringhaus J, Schumacher HW (2011) Plasmon electron–hole resonance in epitaxial graphene. J Phys: Condens Matter, 23 (1), 012001PubMedCrossRefGoogle Scholar
  150. 150.
    Politano A, Marino AR, Formoso V, Farías D, Miranda R, Chiarello G (2011) Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys Rev B, 84 (3), 033401PubMedCrossRefGoogle Scholar
  151. 151.
    Borca B, Barja S, Garnica M, Minniti M, Politano A, Rodriguez-García JM, Hinarejos JJ, Farías D, Vázquez de Parga AL, Miranda R (2010) Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001). New J Phys, 12 (9), 093018PubMedCrossRefGoogle Scholar
  152. 152.
    Politano A, Agostino RG, Colavita E, Formoso V, Tenuta L, Chiarello G (2008) Nature of the alkali surface bond at low coverages investigated by vibrational measurements.J Phys Chem C, 112 (17), 6977-6980PubMedCrossRefGoogle Scholar
  153. 153.
    Politano A, Formoso V, Chiarello G (2008) Temperature effects on alkali-promoted CO dissociation on Ni(111). Surf Sci, 602 (12), 2096–2100PubMedCrossRefGoogle Scholar
  154. 154.
    Politano A, Formoso V, Chiarello G (2008) Alkali adsorption on Ni(111) and their coadsorption with CO and O. Appl Surf Sci, 254 (21), 6854–6859PubMedCrossRefGoogle Scholar
  155. 155.
    Politano A, Formoso V, Chiarello G (2008) Mechanisms Leading to Alkali Oxidation on Metal Surfaces. J Phys Chem C, 112 (46), 17772–17774PubMedCrossRefGoogle Scholar
  156. 156.
    Robba D, Ori DM, Sangalli P, Chiarello G, Depero LE, Parmigiani F (1997) A photoelectron spectroscopy study of sub-monolayer V/TiO2(001) interfaces annealed from 300 up to 623 K. Surf Sci, 380 (2–3), 311–323PubMedCrossRefGoogle Scholar
  157. 157.
    Caputi LS, Chiarello G, Papagno L (1985) Carbonaceous layers on Ni (110) and (100) studied by AES and EELS. Surf Sci, 162 (1–3), 259–263PubMedCrossRefGoogle Scholar
  158. 158.
    De Crescenzi M, Colavita E, Papagno L, Chiarello G, Scarmozzino R, Caputi LS, Rosei R (1983) Electronic properties of Fe80B20 alloys: ordering and disordering effects. J Phys F Met Phys, 13 (4), 895–907PubMedCrossRefGoogle Scholar
  159. 159.
    Chiarello G, Robba D, De Michele G, Parmigiani F (1993) An X-ray Photoelectron-Spectroscopy Study of the Vanadia Titania Catalysts. Appl Surf Sci, 64 (2), 91–96PubMedCrossRefGoogle Scholar
  160. 160.
    Ciambelli P, Bagnasco G, Lisi L, Turco M, Chiarello G, Musci M, Notaro M, Robba D, Ghetti P (1992) Vanadium-Oxide Catalysts Supported on Laser-Synthesized Titania Powders - Characterization and Catalytic Activity in the Selective Reduction of Nitric-Oxide. Appl Catal B Environ, 1 (2), 61–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità degli Studi della CalabriaRende (Cs)Italy
  2. 2.Departamento de Fisica de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations