Skip to main content

Degradable Polymeric Carriers for Parenteral Controlled Drug Delivery

  • Chapter
  • First Online:
Fundamentals and Applications of Controlled Release Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Drug loaded carriers from degradable polymers, namely, injectable microparticles, injectable in situ forming implants, and preformed implants, are established in the clinic for parenteral controlled drug delivery. This chapter provides an overview on several factors influencing release behavior such as drug properties, effects of environmental conditions, osmotically mediated mechanisms, and the selection of the carrier type. Moreover, degradation and erosion of the polymeric matrices are discussed in detail in view of their impact on drug release for different relevant polymer classes and groups of bioactive molecules. Additionally, carrier type-specific issues are included based on the knowledge gained to date from available parenteral controlled release products, as obtained from a comprehensive review of the scientific and patent literature. In particular, preparation techniques and related mechanisms, and both advantages and challenges associated with degradable polymer based delivery systems are described. Strategies to establish a continuous drug release are examined based on rational evaluation of specific polymer classes and carrier types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa Y, Yamamoto M, Okada H, Yashiki T, Shimamoto T (1988) A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem Pharm Bull 36:1095–1103

    PubMed  CAS  Google Scholar 

  2. Hou Q, Chau DY, Pratoomsoot C, Tighe PJ, Dua HS, Shakesheff KM, Rose FR (2008) In situ gelling hydrogels incorporating microparticles as drug delivery carriers for regenerative medicine. J Pharm Sci 97:3972–3980

    PubMed  CAS  Google Scholar 

  3. Harrison BS, Eberli D, Lee SJ, Atala A, Yoo JJ (2007) Oxygen producing biomaterials for tissue regeneration. Biomaterials 28:4628–4634

    PubMed  CAS  Google Scholar 

  4. Wenk E, Meinel AJ, Wildy S, Merkle HP, Meinel L (2009) Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials 30:2571–2581

    PubMed  CAS  Google Scholar 

  5. Tamada JA, Langer R (1993) Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci USA 90:552–556

    PubMed  CAS  Google Scholar 

  6. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    PubMed  CAS  Google Scholar 

  7. Gopferich A (1996) Polymer degradation and erosion: mechanisms and applications. Eur J Pharm Biopharm 42:1–11

    Google Scholar 

  8. Schwendeman SP, Cardamone M, Klibanov AM, Langer R, Brandon MR (1996) Stability of proteins and their delivery from biodegradable polymer microspheres. In: Cohen S, Bernstein H (eds) Microparticulate systems for the delivery of proteins and vaccines. Marcel Decker, New York, pp 1–49

    Google Scholar 

  9. Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18:52–57

    PubMed  CAS  Google Scholar 

  10. Perez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K (2002) Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 54:301–313

    PubMed  CAS  Google Scholar 

  11. Giteau A, Venier-Julienne MC, Aubert-Pouessel A, Benoit JP (2008) How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 350:14–26

    PubMed  CAS  Google Scholar 

  12. van der Walle CF, Sharma G, Ravi Kumar M (2009) Current approaches to stabilising and analysing proteins during microencapsulation in PLGA. Expert Opin Drug Deliv 6:177–186

    PubMed  Google Scholar 

  13. Zhong Y, Zhang L, Ding AG, Shenderova A, Zhu G, Pei P, Chen RR, Mallery SR, Mooney DJ, Schwendeman SP (2007) Rescue of SCID murine ischemic hindlimbs with pH-modified rhbFGF/poly(DL-lactic-co-glycolic acid) implants. J Control Release 122:331–337

    PubMed  CAS  Google Scholar 

  14. Desai KG, Mallery SR, Schwendeman SP (2008) Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(DL-lactide-co-glycolide) implants. Eur J Pharm Biopharm 70:187–198

    PubMed  CAS  Google Scholar 

  15. Wang J, Wang BM, Schwendeman SP (2004) Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(D, L-lactide-co-glycolide) microspheres. Biomaterials 25:1919–1927

    PubMed  CAS  Google Scholar 

  16. Wischke C, Schwendeman SP (2008) Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 364:298–327

    PubMed  CAS  Google Scholar 

  17. Wischke C, Borchert HH, Zimmermann J, Siebenbrodt I, Lorenzen DR (2006) Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J Control Release 114:359–368

    PubMed  CAS  Google Scholar 

  18. Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26:1626–1637

    PubMed  CAS  Google Scholar 

  19. Arias JL, Gallardo V, Ruiz MA (2009) Engineering of poly(butylcyanoacrylate) nanoparticles for the enhancement of the antitumor activity of gemcitabine. Biomacromolecules 10:2310–2318

    Google Scholar 

  20. Iwai K, Maeda H, Konno T (1984) Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res 44:2115–2121

    PubMed  CAS  Google Scholar 

  21. Wischke C, Neffe AT, Steuer S, Lendlein A (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release 138:243–250

    PubMed  CAS  Google Scholar 

  22. Wischke C, Neffe AT, Lendlein A (2010) Controlled drug release from shape-memory polymers. Adv Polym Sci 226:177–205

    CAS  Google Scholar 

  23. Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers – a multifunctional system. Pharm Res 27(4):527–529

    PubMed  CAS  Google Scholar 

  24. Berkland C, King M, Cox A, Kim K, Pack DW (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 82:137–147

    PubMed  CAS  Google Scholar 

  25. Hutchinson FG (1986) Continuous release pharmaceutical compositions. European Patent EP 58 481

    Google Scholar 

  26. Klose D, Siepmann F, Willart JF, Descamps M, Siepmann J (2010) Drug release from PLGA-based microparticles: effects of the “microparticle:bulk fluid” ratio. Int J Pharm 383:123–131

    PubMed  CAS  Google Scholar 

  27. Kulkarni A, Reiche J, Hartmann J, Kratz K, Lendlein A (2008) Selective enzymatic degradation of poly(epsilon-caprolactone) containing multiblock copolymers. Eur J Pharm Biopharm 68:46–56

    PubMed  CAS  Google Scholar 

  28. Elkharraz K, Faisant N, Guse C, Siepmann F, Arica-Yegin B, Oger JM, Gust R, Goepferich A, Benoit JP, Siepmann J (2006) Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: preparation and physicochemical characterization. Int J Pharm 314:127–136

    PubMed  CAS  Google Scholar 

  29. Zhao ZJ, Wang Q, Zhang L, Liu YC (2007) A different diffusion mechanism for drug molecules in amorphous polymers. J Phys Chem B 111:4411–4416

    PubMed  CAS  Google Scholar 

  30. Schwendeman SP, Tobio M, Joworowicz M, Alonso MJ, Langer R (1998) New strategies for the microencapsulation of tetanus vaccine. J Microencapsul 15:299–318

    PubMed  CAS  Google Scholar 

  31. Domb AJ (1993) Degradable polymer blends.1. Screening of miscible polymers. J Polym Sci A Polym Chem 31:1973–1981

    CAS  Google Scholar 

  32. Matsumoto A, Matsukawa Y, Horikiri Y, Suzuki T (2006) Rupture and drug release characteristics of multi-reservoir type microspheres with poly(dl-lactide-co-glycolide) and poly(dl-lactide). Int J Pharm 327:110–116

    PubMed  CAS  Google Scholar 

  33. Wang J (2000) Characterization of microsphere drug delivery systems during encapsulation and initial drug release. The Ohio State University, Columbus

    Google Scholar 

  34. Kang J, Schwendeman SP (2007) Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol Pharm 4:104–118

    PubMed  CAS  Google Scholar 

  35. Wool RP, Oconnor KM (1981) A theory of crack healing in polymers. J Appl Phys 52:5953–5963

    CAS  Google Scholar 

  36. Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418

    CAS  Google Scholar 

  37. Wang J, Wang BM, Schwendeman SP (2002) Characterization of the initial burst release of a model peptide from poly(D, L-lactide-co-glycolide) microspheres. J Control Release 82:289–307

    PubMed  CAS  Google Scholar 

  38. Heller J (1980) Controlled release of biologically-active compounds from bioerodible polymers. Biomaterials 1:51–57

    PubMed  CAS  Google Scholar 

  39. Leonard F, Kulkarni RK, Brandes G, Nelson J, Cameron JJ (1966) Synthesis and degradation of poly (alkyl a-cyanoacrylates). J Appl Polym Sci 10:259–272

    CAS  Google Scholar 

  40. Ryan B, McCann G (1996) Novel sub-ceiling temperature rapid depolymerization-repolymerization reactions of cyanoacrylate polymers. Macromol Rapid Commun 17:217–227

    CAS  Google Scholar 

  41. Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68

    PubMed  CAS  Google Scholar 

  42. Scherer D, Robinson JR, Kreuter J (1994) Influence of enzymes on the stability of polybutylcyanoacrylate nanoparticles. Int J Pharm 101:165–168

    CAS  Google Scholar 

  43. Nicolas J, Couvreur P (2009) Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:111–127

    PubMed  CAS  Google Scholar 

  44. Wischke C, Neffe AT, Steuer S, Lendlein A (2010) AB-polymer Networks with Cooligoester and Poly(n-butyl acrylate) Segments as a Multifunctional Matrix for Controlled Drug Release. Macromol Biosci 10:1063–1072

    PubMed  CAS  Google Scholar 

  45. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    PubMed  CAS  Google Scholar 

  46. Madaghiele M, Piccinno A, Saponaro M, Maffezzoli A, Sannino A (2009) Collagen- and gelatine-based films sealing vascular prostheses: evaluation of the degree of crosslinking for optimal blood impermeability. J Mater Sci Mater Med 20(10):1979–1989

    PubMed  CAS  Google Scholar 

  47. Kraehenbuehl TP, Ferreira LS, Zammaretti P, Hubbell JA, Langer R (2009) Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials 30:4318–4324

    PubMed  CAS  Google Scholar 

  48. Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(alpha -hydroxy acids) in aqueous media. Part 2 degradation of/actide-g/yco/ide copo/ymers. PLA37.5GA25 and PLA75GA25. J Mater Sci Mater Med 1:131–139

    CAS  Google Scholar 

  49. Park TG (1995) Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16:1123–1130

    PubMed  CAS  Google Scholar 

  50. Maniar M, Xie XD, Domb AJ (1990) Polyanhydrides. V. Branched polyanhydrides. Biomaterials 11:690–694

    PubMed  CAS  Google Scholar 

  51. Kissel T, Brich Z, Bantle S, Lancranjan I, Nimmerfall F, Vit P (1991) Parenteral depot-systems on the basis of biodegradable polyesters. J Control Release 16:27–41

    CAS  Google Scholar 

  52. Jerome C, Lecomte P (2008) Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 60:1056–1076

    PubMed  CAS  Google Scholar 

  53. Ding AG, Schwendeman SP (2004) Determination of water-soluble acid distribution in poly(lactide-co-glycolide). J Pharm Sci 93:322–331

    PubMed  CAS  Google Scholar 

  54. Siepmann J, Elkharraz K, Siepmann F, Klose D (2005) How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules 6:2312–2319

    PubMed  CAS  Google Scholar 

  55. Li L, Schwendeman SP (2005) Mapping neutral microclimate pH in PLGA microspheres. J Control Release 101:163–173

    PubMed  CAS  Google Scholar 

  56. Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(alpha-hydroxy acids) in aqueous media. Part 1 poly(dl-lactic acid). J Mater Sci Mater Med 1:123–130

    CAS  Google Scholar 

  57. Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48:342–353

    PubMed  CAS  Google Scholar 

  58. Lu L, Garcia CA, Mikos AG (1999) In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res 46:236–244

    PubMed  CAS  Google Scholar 

  59. von Burkersroda F, Schedl L, Gopferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231

    Google Scholar 

  60. Rothstein SN, Federspiel WJ, Little SR (2009) A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials 30:1657–1664

    PubMed  CAS  Google Scholar 

  61. Furr BJA, Hutchinson FG (1992) A biodegradable delivery system for peptides: preclinical experience with the gonadotrophin-releasing hormone agonist Zoladex. J Control Release 21:117–128

    CAS  Google Scholar 

  62. Husmann M, Schenderlein S, Luck M, Lindner H, Kleinebudde P (2002) Polymer erosion in PLGA microparticles produced by phase separation method. Int J Pharm 242:277–280

    PubMed  CAS  Google Scholar 

  63. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials 16:305–311

    PubMed  CAS  Google Scholar 

  64. Witschi C, Doelker E (1998) Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. J Control Release 51:327–341

    PubMed  CAS  Google Scholar 

  65. Bhardwaj R, Blanchard J (1998) In vitro characterization and in vivo release profile of a poly(D, L-lactide-co-glycolide)-based implant delivery system for the alpha-MSH analog, melanotan-I. Int J Pharm 170:109–117

    CAS  Google Scholar 

  66. Liggins RT, Burt HM (2001) Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222:19–33

    PubMed  CAS  Google Scholar 

  67. Vidil C, Braud C, Garreau H, Vert M (1995) Monitoring of the poly(D, L-lactic acid) degradation by-products by capillary zone electrophoresis. J Chromatogr A 711:323–329

    CAS  Google Scholar 

  68. Joshi A, Himmelstein KJ (1990) Kinetics of controlled release from acid catalyzed polymeric matrices. Polym Prepr 31:175–176

    CAS  Google Scholar 

  69. Gopferich A, Tessmar J (2002) Polyanhydride degradation and erosion. Adv Drug Deliv Rev 54:911–931

    PubMed  CAS  Google Scholar 

  70. Xu XJ, Sy JC, Shastri VP (2006) Towards developing surface eroding poly(alpha-hydroxy acids). Biomaterials 27:3021–3030

    PubMed  CAS  Google Scholar 

  71. Alexis F (2005) Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly (lactic acid)-co-(glycolic acid). Polym Int 54:36–46

    CAS  Google Scholar 

  72. Zolnik BS, Burgess DJ (2008) Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. J Control Release 127:137–145

    PubMed  CAS  Google Scholar 

  73. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Google Scholar 

  74. Pitt CG, Hendren RW, Schindler A, Woodward SC (1984) The enzymatic surface erosion of aliphatic polyesters. J Control Release 1:3–14

    CAS  Google Scholar 

  75. Liu F, Zhao ZX, Yang J, Wei J, Li SM (2009) Enzyme-catalyzed degradation of poly(L-lactide)/poly(epsilon-caprolactone) diblock, triblock and four-armed copolymers. Polym Degrad Stabil 94:227–233

    CAS  Google Scholar 

  76. Desai KG, Mallery SR, Schwendeman SP (2008) Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor. Pharm Res 25:586–597

    PubMed  CAS  Google Scholar 

  77. Maulding HV, Tice TR, Cowar DR, Fong JW, Pearson JE, Nazareno JP (1986) Biodegradable microcapsules: acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament. J Control Release 3:103–117

    CAS  Google Scholar 

  78. Wang L, Venkatraman S, Kleiner L (2004) Drug release from injectable depots: two different in vitro mechanisms. J Control Release 99:207–216

    PubMed  CAS  Google Scholar 

  79. Cha Y, Pitt CG (1988) A one-week subdermal delivery system for l-methadone based on biodegradable microcapsules. J Control Release 8:69–78

    Google Scholar 

  80. Cha Y, Pitt CG (1989) The acceleration of degradation controlled drug delivery from polyester microspheres. J Control Release 8:259–265

    CAS  Google Scholar 

  81. Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N (2006) Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 64:287–293

    PubMed  CAS  Google Scholar 

  82. Heller J, Barr J (2005) Biochronomer technology. Expert Opin Drug Deliv 2:169–183

    PubMed  CAS  Google Scholar 

  83. APF530 study (2009) APF530 or Palonosetron Combined With Dexamethasone in Preventing Nausea and Vomiting in Patients Receiving Chemotherapy for Cancer (NCT00343460). U.S. National Institutes of Health. http://www.ClinicalTRials.gov

  84. AP Pharma (2010) Press release: A.P. Pharma Receives FDA Complete Response Letter for APF530. http://www.appharma.com/PDFs/03-19-10%20Complete%20Response%20Letter.pdf. Accessed 18 Jun 2010

  85. Packhaeuser CB, Schnieders J, Oster CG, Kissel T (2004) In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 58:445–455

    PubMed  CAS  Google Scholar 

  86. Exner AA, Saidel GM (2008) Drug-eluting polymer implants in cancer therapy. Expert Opin Drug Deliv 5:775–788

    PubMed  CAS  Google Scholar 

  87. Wykrzykowska JJ, Onuma Y, Serruys PW (2009) Advances in stent drug delivery: the future is in bioabsorbable stents. Expert Opin Drug Deliv 6:113–126

    PubMed  CAS  Google Scholar 

  88. Su S-H (2007) Mini Review of the fully biodegradable polymeric stents. Recent Pat Eng 1:244–250

    CAS  Google Scholar 

  89. ANZHSN (2007) Biodegradable stents for coronary artery disease. Australian Government, Department of Health and Aging. http://www.surgeons.org/AM/Template.cfm?SectionASERNIP_S_NET_S_DatabaseTemplate/CM/ContentDisplay.cfmContentFileID24135

  90. Ramcharitar S, Serruys PW (2008) Fully biodegradable coronary stents: progress to date. Am J Cardiovasc Drugs 8:305–314

    PubMed  CAS  Google Scholar 

  91. Weber N, Pesnell A, Bolikal D, Zeltinger J, Kohn J (2007) Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices. Langmuir 23:3298–3304

    PubMed  CAS  Google Scholar 

  92. Lendlein A, Behl A, Hiebl B, Wischke C (2010) Shape-memory polymers as technology platform for biomedical applications. Expert Rev Med Dev 7:357–379

    Google Scholar 

  93. Okada H, Ogawa Y, Yashiki T (1987) Prolonged release microcapsule and its production. United States Patent US 4,652,441

    Google Scholar 

  94. Castellanos IJ, Cuadrado WO, Griebenow K (2001) Prevention of structural perturbations and aggregation upon encapsulation of bovine serum albumin into poly(lactide-co-glycolide) micropheres using the solid-in-oil-in water technique. J Pharm Pharmacol 53:1099–1107

    PubMed  CAS  Google Scholar 

  95. Carrasquillo KG, Carro JC, Alejandro A, Toro DD, Griebenow K (2001) Reduction of structural perturbations in bovine serum albumin by non-aqueous microencapsulation. J Pharm Pharmacol 53:115–120

    PubMed  CAS  Google Scholar 

  96. Johnson OL, Cleland JL, Lee HJ, Charnis M, Duenas E, Jaworowicz W, Shepard D, Shahzamani A, Jones AJ, Putney SD (1996) A month-long effect from a single injection of microencapsulated human growth hormone. Nat Med 2:795–799

    PubMed  CAS  Google Scholar 

  97. Wakiyama N, Juni K, Nakano M (1981) Preparation and evaluation in vitro of polylactic acid microspheres containing local anesthetics. Chem Pharm Bull 29:3363–3368

    PubMed  CAS  Google Scholar 

  98. Dean RL (2005) The preclinical development of Medisorb Naltrexone, a once a month long acting injection, for the treatment of alcohol dependence. Front Biosci 10:643–655

    PubMed  CAS  Google Scholar 

  99. Sah H, Lee B (2006) Development of new microencapsulation techniques useful for the preparation of PLGA microspheres. Macromol Rapid Commun 27:1845–1851

    CAS  Google Scholar 

  100. Wada R, Hyon SH, Ikada Y (1990) Lactic-acid oligomer microspheres containing hydrophilic drugs. J Pharm Sci 79:919–924

    PubMed  CAS  Google Scholar 

  101. Bodmeier R, Chen HG (1988) Preparation of biodegradable Poly (+/−) lactide microparticles using a spray-drying technique. J Pharm Pharmacol 40:754–757

    PubMed  CAS  Google Scholar 

  102. Leelarasamee N, Howard SA, Malanga CJ, Luzzi LA, Hogan TF, Kandzari SJ, Ma JK (1986) Kinetics of drug release from polylactic acid-hydrocortisone microcapsules. J Microencapsul 3:171–179

    PubMed  CAS  Google Scholar 

  103. Lill N, Sandow J (1995) Langwirkende bioabbaubare Mikropartikel und ein Verfahren zur Herstellung. European Patent

    Google Scholar 

  104. Bodmer D, Fong JW, Kissel T, Maulding HV, Nagele O, Pearson JE (1996) Sustained release formulations of water soluble peptides. United States Patent US 5,538,739

    Google Scholar 

  105. Kissel T, Maretschek S, Packhaeuser CB, Schnieders J, Seidel N (2006) Microencapsulation techniques for parenteral depot systems and their application in the pharmaceutical industry. In: Benita S (ed) Microencapsulation: methods and industrial application. CRC, Boca Raton, FL

    Google Scholar 

  106. Smith A, Hunneyball IM (1986) Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int J Pharm 30:215–220

    CAS  Google Scholar 

  107. Mishima K (2008) Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev 60:411–432

    PubMed  CAS  Google Scholar 

  108. Williams JR, Clifford AA, Al-Saidi SH (2002) Supercritical fluids and their applications in biotechnology and related areas. Mol Biotechnol 22:263–286

    PubMed  CAS  Google Scholar 

  109. Wischke C, Borchert HH (2006) Influence of the primary emulsification procedure on the characteristics of small protein-loaded PLGA microparticles for antigen delivery. J Microencapsul 23:435–448

    PubMed  CAS  Google Scholar 

  110. Okada H (1997) One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev 28:43–70

    PubMed  CAS  Google Scholar 

  111. Zhou T, Lewis H, Foster RE, Schwendeman SP (1998) Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J Control Release 55:281–295

    PubMed  CAS  Google Scholar 

  112. Ghalanbor Z, Korber M, Bodmeier R (2010) Improved lysozyme stability and release properties of poly(lactide-co-glycolide) implants prepared by hot-melt extrusion. Pharm Res 27:371–379

    PubMed  CAS  Google Scholar 

  113. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117

    PubMed  CAS  Google Scholar 

  114. Rothen-Weinhold A, Schwach-Abdellaoui K, Barr J, Ng SY, Shen HR, Gurny R, Heller J (2001) Release of BSA from poly(ortho ester) extruded thin strands. J Control Release 71:31–37

    PubMed  CAS  Google Scholar 

  115. Li LC, Deng J, Stephens D (2002) Polyanhydride implant for antibiotic delivery – from the bench to the clinic. Adv Drug Deliv Rev 54:963–986

    PubMed  Google Scholar 

  116. Grossman SA, Reinhard C, Colvin OM, Chasin M, Brundrett R, Tamargo RJ, Brem H (1992) The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 76:640–647

    PubMed  CAS  Google Scholar 

  117. Chasin B, Hollenbeck G, Brem H, Grossman S, Colvin M, Langer R (1990) Interstitial drug therapy for brain tumors: a case study. Drug Dev Ind Pharm 16:2579–2594

    CAS  Google Scholar 

  118. Akbari H, D’Emanuele A, Attwood D (1998) Effect of fabrication technique on the erosion characteristics of polyanhydride matrices. Pharm Dev Technol 3:251–259

    PubMed  CAS  Google Scholar 

  119. Laurencin CT, Ibim SEM, Langer RS (1995) Poly(anhydrides). In: Hollinger JO (ed) Biomedical applications of synthetic biodegradable polymers. CRC, Boca Raton, FL, pp 59–102

    Google Scholar 

  120. Weiler W, Gogolewski S (1996) Enhancement of the mechanical properties of polylactides by solid-state extrusion.1. Poly(D-lactide). Biomaterials 17:529–535

    PubMed  CAS  Google Scholar 

  121. Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) The effect of melt-processing on the degradation of selected polyhydroxyacids – polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym Degrad Stabil 40:313–322

    CAS  Google Scholar 

  122. Rothen-Weinhold A, Besseghir K, Vuaridel E, Sublet E, Oudry N, Gurny R (1999) Stability studies of a somatostatin analogue in biodegradable implants. Int J Pharm 178:213–221

    PubMed  CAS  Google Scholar 

  123. Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    CAS  Google Scholar 

  124. Nott PR, Brady JF (1994) Pressure-driven flow of suspensions – simulation and theory. J Fluid Mech 275:157–199

    CAS  Google Scholar 

  125. Deng J, Li L, Stephens D, Tian Y, Robinson D (2004) Effect of postmolding heat treatment on in vitro properties of a polyanhydride implant containing gentamicin sulfate. Drug Dev Ind Pharm 30:341–346

    PubMed  CAS  Google Scholar 

  126. Choi SH, Park TG (2000) Hydrophobic ion pair formation between leuprolide and sodium oleate for sustained release from biodegradable polymeric microspheres. Int J Pharm 203:193–202

    PubMed  CAS  Google Scholar 

  127. Schwendeman SP (2002) Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst 19:73–98

    PubMed  CAS  Google Scholar 

  128. Zhu G, Schwendeman SP (2000) Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives. Pharm Res 17:351–357

    PubMed  CAS  Google Scholar 

  129. Kang JC, Schwendeman SP (2002) Comparison of the effects of Mg(OH)(2) and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D, L-lactide-co-glycolide) implants. Biomaterials 23:239–245

    PubMed  CAS  Google Scholar 

  130. Jiang WL, Schwendeman SP (2008) Stabilization of tetanus toxoid encapsulated in PLGA microspheres. Mol Pharm 5:808–817

    PubMed  CAS  Google Scholar 

  131. Zhang Y, Zale S, Sawyer L, Bernstein H (1997) Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res 34:531–538

    PubMed  CAS  Google Scholar 

  132. Sandow J, von Rechenberg W, Seidel H, Keil M (1989) Experimental studies on tissue tolerance and on biodegradation of polylactide/glycolide-buserelin implants in rats. In: Aumüller G (ed) New aspects in the regulation of prostatic function. W. Zuckerschwerdt Verlag GmbH, Munich, pp 157–166

    Google Scholar 

  133. Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48:229–247

    PubMed  CAS  Google Scholar 

  134. Lin SH, Kleinberg LR (2008) Carmustine wafers: localized delivery of chemotherapeutic agents in CNS malignancies. Expert Rev Anticancer Ther 8:343–359

    PubMed  CAS  Google Scholar 

  135. Dang W, Daviau T, Brem H (1996) Morphological characterization of polyanhydride biodegradable implant gliadel during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res 13:683–691

    PubMed  CAS  Google Scholar 

  136. Kumar N, Langer RS, Domb AJ (2002) Polyanhydrides: an overview. Adv Drug Deliv Rev 54:889–910

    PubMed  CAS  Google Scholar 

  137. Domb AJ, Israel ZH, Elmalak O, Teomim D, Bentolila A (1999) Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res 16:762–765

    PubMed  CAS  Google Scholar 

  138. Dang WB, Daviau T, Ying P, Zhao Y, Nowotnik D, Clow CS, Tyler B, Brem H (1996) Effects of GLIADEL(R) wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 42:83–92

    CAS  Google Scholar 

  139. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    PubMed  CAS  Google Scholar 

  140. Couffin-Hoarau AC, Motulsky A, Delmas P, Leroux JC (2004) In situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives. Pharm Res 21:454–457

    PubMed  CAS  Google Scholar 

  141. Motulsky A, Lafleur M, Couffin-Hoarau AC, Hoarau D, Boury F, Benoit JP, Leroux JC (2005) Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 26:6242–6253

    PubMed  CAS  Google Scholar 

  142. Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069

    CAS  Google Scholar 

  143. Gong C, Shi S, Wu L, Gou M, Yin Q, Guo Q, Dong P, Zhang F, Luo F, Zhao X, Wei Y, Qian Z (2009) Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater 5:3358–3370

    PubMed  CAS  Google Scholar 

  144. Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24:1073–1087

    CAS  Google Scholar 

  145. Tate MC, Shear DA, Hoffman SW, Stein DG, LaPlaca MC (2001) Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials 22:1113–1123

    PubMed  CAS  Google Scholar 

  146. Park KM, Shin YM, Joung YK, Shin H, Park KD (2010) In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction. Biomacromolecules 11(3):706–712

    PubMed  CAS  Google Scholar 

  147. Slepian MJ, Hubbell JA (1997) Polymeric endoluminal gel paving: hydrogel systems for local barrier creation and site-specific drug delivery. Adv Drug Deliv Rev 24:11–30

    CAS  Google Scholar 

  148. Ramakumar S, Roberts WW, Fugita OE, Colegrove P, Nicol TM, Jarrett TW, Kavoussi LR, Slepian MJ (2002) Local hemostasis during laparoscopic partial nephrectomy using biodegradable hydrogels: initial porcine results. J Endourol 16:489–494

    PubMed  Google Scholar 

  149. Qiu B, Stefanos S, Ma JL, Lalloo A, Perry BA, Leibowitz MJ, Sinko PJ, Stein S (2003) A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials 24:11–18

    PubMed  Google Scholar 

  150. Cohen S, Lobel E, Trevgoda A, Peled Y (1997) A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release 44:201–208

    CAS  Google Scholar 

  151. Packhaeuser CB, Kissel T (2007) On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles. J Control Release 123:131–140

    PubMed  CAS  Google Scholar 

  152. Heller J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Gurny R, Vivien-Castioni N, Loup PJ, Baehni P, Mombelli A (2002) Development and applications of injectable poly(ortho esters) for pain control and periodontal treatment. Biomaterials 23:4397–4404

    CAS  Google Scholar 

  153. Barr J, Woodburn KW, Ng SY, Shen HR, Heller J (2002) Post surgical pain management with poly(ortho esters). Adv Drug Deliv Rev 54:1041–1048

    PubMed  CAS  Google Scholar 

  154. Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80:9–28

    PubMed  CAS  Google Scholar 

  155. Bezwada RS (1995) Liquid copolymers of epsilon-caprolactone and lactide. United States Patent US 5,422,033

    Google Scholar 

  156. Bezwada RS, Arnold SC, Shalaby SW, Williams BL (1997) Liquid absorbable polymers for parenteral applications. United States Patent US 5,653,992

    Google Scholar 

  157. Jain JP, Modi S, Kumar N (2008) Hydroxy fatty acid based polyanhydride as drug delivery system: synthesis, characterization, in vitro degradation, drug release, and biocompatibility. J Biomed Mater Res A 84A:740–752

    CAS  Google Scholar 

  158. Dunn RL, English JP, Cowsar DR, Vanderbilt DP (1990) Biodegradable in situ forming implants and methods of producing the same. United States Patent US 4,938,763

    Google Scholar 

  159. Dunn RL, Tipton AJ (1997) Polymeric compositions useful as controlled release implants. United States Patent US 7,702,716

    Google Scholar 

  160. Shah NH, Railkar AS, Chen FC, Tarantino R, Kumar S, Murjani M, Palmer D, Infeld MH, Malick AW (1993) A biodegradable injectable implant for delivering micromolecules and macromolecules using poly(lactic-co-glycolic) acid (plga) copolymers. J Control Release 27:139–147

    CAS  Google Scholar 

  161. Brodbeck KJ, Gaynor-Duarte AT, Shen TT (2000) Gel compositions and methods. United States Patent US 6,130,200

    Google Scholar 

  162. Tipton AJ (1999) High viscosity liquid controlled delivery system as a device. United States Patent US 5,968,542

    Google Scholar 

  163. Burns PJ, Gibson JW, Tipton AJ (2000) Compositions suitable for controlled release of the hormone GNRH and its analogs. United States Patent US 6,051,558

    Google Scholar 

  164. Bodmeier R (1998) Verfahren zur in-situ Herstellung von Partikeln. German Patent Application Publication DE 197 24 784

    Google Scholar 

  165. Kranz H, Brazeau GA, Napaporn J, Martin RL, Millard W, Bodmeier R (2001) Myotoxicity studies of injectable biodegradable in-situ forming drug delivery systems. Int J Pharm 212:11–18

    PubMed  CAS  Google Scholar 

  166. Rungseevijitprapa W, Bodmeier R (2009) Injectability of biodegradable in situ forming microparticle systems (ISM). Eur J Pharm Sci 36:524–531

    PubMed  CAS  Google Scholar 

  167. Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH (2000) Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Eur J Pharm Biopharm 50:257–262

    PubMed  CAS  Google Scholar 

  168. Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH (2000) Comparison of various injectable protein-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices: in-situ-formed implant versus in-situ-formed microspheres versus isolated microspheres. Pharm Dev Technol 5:201–207

    PubMed  CAS  Google Scholar 

  169. Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH (2000) Controlled delivery of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system. J Microencapsul 17:343–362

    PubMed  CAS  Google Scholar 

  170. Royals MA, Fujita SM, Yewey GL, Rodriguez J, Schultheiss PC, Dunn RL (1999) Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res 45:231–239

    PubMed  CAS  Google Scholar 

  171. Graham PD, Brodbeck KJ, McHugh AJ (1999) Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release 58:233–245

    PubMed  CAS  Google Scholar 

  172. Brodbeck KJ, DesNoyer JR, McHugh AJ (1999) Phase inversion dynamics of PLGA solutions related to drug delivery – Part II. The role of solution thermodynamics and bath-side mass transfer. J Control Release 62:333–344

    PubMed  CAS  Google Scholar 

  173. Astaneh R, Erfan M, Moghimi H, Mobedi H (2009) Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. J Pharm Sci 98:135–145

    PubMed  CAS  Google Scholar 

  174. Brodbeck KJ, Pushpala S, McHugh AJ (1999) Sustained release of human growth hormone from PLGA solution depots. Pharm Res 16:1825–1829

    PubMed  CAS  Google Scholar 

  175. Chen SB, Singh J (2005) Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int J Pharm 295:183–190

    PubMed  CAS  Google Scholar 

  176. Singh S, Singh J (2007) Phase-sensitive polymer-based controlled delivery systems of leuprolide acetate: in vitro release, biocompatibility, and in vivo absorption in rabbits. Int J Pharm 328:42–48

    PubMed  CAS  Google Scholar 

  177. Kang F, Singh J (2005) In vitro release of insulin and biocompatibility of in situ forming gel systems. Int J Pharm 304:83–90

    PubMed  CAS  Google Scholar 

  178. Singh S, Singh J (2004) Controlled release of a model protein lysozyme from phase sensitive smart polymer systems. Int J Pharm 271:189–196

    PubMed  CAS  Google Scholar 

  179. Yewey GL, Duysen ED, Cox SM, Dunn RL (1997) Delivery of proteins from a controlled release injectable implant. In: Sanders LM, Hendren RW (eds) Protein delivery: physical systems. Plenum, New York, pp 93–117

    Google Scholar 

  180. Dunn RL, Yewey GL, Fujita SM, Josephs KR, Whitman SL, Southard GL, Dernell WS, Straw RC, Withrow SJ, Powers BE (1996) Sustained release of cisplatin in dogs from an injectable implant delivery system. J Bioact Compat Pol 11:286–300

    CAS  Google Scholar 

  181. Fang F, Gong CY, Dong PW, Fu SZ, Gu YC, Guo G, Zhao X, Wei YQ, Qian ZY (2009) Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Biomed Mater 4:025002

    PubMed  Google Scholar 

  182. Schoenhammer K, Petersen H, Guethlein F, Goepferich A (2009) Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability. Int J Pharm 371:33–39

    PubMed  CAS  Google Scholar 

  183. Schoenhammer K, Petersen H, Guethlein F, Goepferich A (2009) Poly(ethyleneglycol) 500 dimethylether as novel solvent for injectable in situ forming depots. Pharm Res 26:2568–2577

    PubMed  CAS  Google Scholar 

  184. Eliaz RE, Kost J (2000) Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 50:388–396

    PubMed  CAS  Google Scholar 

  185. Krebs MD, Sutter KA, Lin ASP, Guldberg RE, Alsberg E (2009) Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomater 5:2847–2859

    PubMed  CAS  Google Scholar 

  186. Shively ML, Coonts BA, Renner WD, Southard J, Bennett AT (1995) Physicochemical characterization of a polymeric injectable implant delivery system. J Control Release 33:237–243

    CAS  Google Scholar 

  187. Ravivarapu HB, Moyer KL, Dunn RL (2000) Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int J Pharm 194:181–191

    PubMed  CAS  Google Scholar 

  188. Kempe S, Metz H, Pereira PG, Mader K (2010) Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy. Eur J Pharm Biopharm 74:102–108

    PubMed  CAS  Google Scholar 

  189. Kempe S, Metz H, Mader K (2008) Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process. J Control Release 130:220–225

    PubMed  CAS  Google Scholar 

  190. Solorio L, Babin BM, Patel RB, Mach J, Azar N, Exner AA (2010) Noninvasive characterization of in situ forming implants using diagnostic ultrasound. J Control Release 143(2):183–190

    PubMed  CAS  Google Scholar 

  191. Miyajima M, Koshika A, Okada J, Ikeda M, Nishimura K (1997) Effect of polymer crystallinity on papaverine release from poly (L-lactic acid) matrix. J Control Release 49:207–215

    CAS  Google Scholar 

  192. DesNoyer JR, McHugh AJ (2001) Role of crystallization in the phase inversion dynamics and protein release kinetics of injectable drug delivery systems. J Control Release 70:285–294

    PubMed  CAS  Google Scholar 

  193. Wang L, Kleiner L, Venkatraman S (2003) Structure formation in injectable poly(lactide-co-glycolide) depots. J Control Release 90:345–354

    PubMed  CAS  Google Scholar 

  194. Astaneh R, Nafissi-Varcheh N, Erfan M (2007) Zinc-leuprolide complex: preparation, physicochemical characterization and release behaviour from in situ forming implant. J Pept Sci 13:649–654

    PubMed  CAS  Google Scholar 

  195. Dudeck O, Jordan O, Hoffmann KT, Okuducu AF, Tesmer K, Kreuzer-Nagy T, Rufenacht DA, Doelker E, Felix R (2006) Organic solvents as vehicles for precipitating liquid embolics: a comparative angiotoxicity study with superselective injections of swine rete mirabile. Am J Neuroradiol 27:1900–1906

    PubMed  CAS  Google Scholar 

  196. AGL9909 study (2000) A six-month, open label, fixed dose study to evaluate the safety, tolerance, pharmacokinetics and endocrine efficacy of two doses of LA-2550 22.5mg in patients with advanced prostate cancer, Eligard® product information. http://products.sanofi-aventis.us/eligard/eligard_225.html. Accessed 23 Jan 2008

  197. Cox MC, Scripture CD, Figg WD (2005) Leuprolide acetate given by a subcutaneous extended-release injection: less of a pain? Expert Rev Anticancer Ther 5:605–611

    PubMed  CAS  Google Scholar 

  198. Kim TS, Klimpel H, Fiehn W, Eickholz P (2004) Comparison of the pharmacokinetic profiles of two locally administered doxycycline gels in crevicular fluid and saliva. J Clin Periodontol 31:286–292

    PubMed  CAS  Google Scholar 

  199. Southard GL, Dunn RL, Garrett S (1998) The drug delivery and biomaterial attributes of the ATRIGEL technology in the treatment of periodontal disease. Expert Opin Investig Drugs 7:1483–1491

    PubMed  CAS  Google Scholar 

  200. Langer R (1980) Polymeric delivery systems for controlled drug release. Chem Eng Commun 6:1–48

    CAS  Google Scholar 

  201. Sanders LM, McRae GI, Vitale KM, Kell BA (1985) Controlled delivery of an LHRH analogue from biodegradable injectable microspheres. J Control Release 2:187–195

    CAS  Google Scholar 

  202. Sanders LM, Kent JS, McRae GI, Vickery BH, Tice TR, Lewis DH (1984) Controlled release of a luteinizing hormone-releasing hormone analogue from poly(d, l-lactide-co-glycolide) microspheres. J Pharm Sci 73:1294–1297

    PubMed  CAS  Google Scholar 

  203. Allison SD (2008) Analysis of initial burst in PLGA microparticles. Expert Opin Drug Deliv 5:615–628

    PubMed  CAS  Google Scholar 

  204. Jalil R, Nixon JR (1989) Microencapsulation using poly(L-lactic acid). I: microcapsule properties affected by the preparative technique. J Microencapsul 6:473–484

    PubMed  CAS  Google Scholar 

  205. Wischke C, Neffe AT, Steuer S, Lendlein A (2010) Comparing techniques for drug loading of shape-memory polymer networks-effect on their functionalities. Eur J Pharm Sci. doi:10.1016/j.ejps.2010.06.003

  206. Yeo Y, Park K (2004) Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 27:1–12

    PubMed  CAS  Google Scholar 

  207. Bodmeier R, McGinity JW (1987) The preparation and evaluation of drug-containing poly(dl-lactide) microspheres formed by the solvent evaporation method. Pharm Res 4:465–471

    PubMed  CAS  Google Scholar 

  208. Kang JC, Schwendeman SP (2003) Determination of diffusion coefficient of a small hydrophobic probe in poly(lactide-co-glycolide) microparticles by laser scanning confocal microscopy. Macromolecules 36:1324–1330

    CAS  Google Scholar 

  209. Luan X, Bodmeier R (2006) In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur J Pharm Sci 27:143–149

    PubMed  CAS  Google Scholar 

  210. Bodmeier R, Oh KH, Chen H (1989) The effect of the addition of low-molecular weight poly(Dl-Lactide) on drug release from biodegradable poly(Dl-Lactide) drug delivery systems. Int J Pharm 51:1–8

    CAS  Google Scholar 

  211. Lavelle EC, Yeh MK, Coombes AG, Davis SS (1999) The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Vaccine 17:512–529

    PubMed  CAS  Google Scholar 

  212. Jiang WL, Schwendeman SP (2001) Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 18:878–885

    PubMed  CAS  Google Scholar 

  213. Ravivarapu HB, Burton K, DeLuca PP (2000) Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur J Pharm Biopharm 50:263–270

    PubMed  CAS  Google Scholar 

  214. Langer RS, Peppas NA (1981) Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2:201–214

    PubMed  CAS  Google Scholar 

  215. Okada H, Heya T, Ogawa Y, Toguchi H, Shimamoto T (1991) Sustained pharmacological activities in rats following single and repeated administration of once-a-month injectable microspheres of leuprolide acetate. Pharm Res 8:584–587

    PubMed  CAS  Google Scholar 

  216. Chia HH, Yang YY, Chung TS, Ng S, Heller J (2001) Auto-catalyzed poly(ortho ester) microspheres: a study of their erosion and drug release mechanism. J Control Release 75:11–25

    PubMed  CAS  Google Scholar 

  217. Kent JS, Sanders L, Tice TR, Lewis DH (1984) Microencapsulation of the peptide narfalin acetate for controlled release. In: Zatuchni GI, Goldsmith A, Shelton JD, Sciarra JJ (eds) Long-acting contraceptive delivery systems. Harper & Row, Philadelphia, pp 169–179

    Google Scholar 

  218. Bodmer D, Kissel T, Traechslin E (1992) Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J Control Release 21:129–137

    CAS  Google Scholar 

  219. Bodmer D, Fong JW, Kissel T, Maulding HV, Nagele O, Pearson JE (1996) Octreotidepamoat und dessen Verwendung zur Herstellung von pharmazeutischen Formulierungen. Swiss Patent CH 686 252

    Google Scholar 

  220. Bodmer D, Fong JW, Kissel T, Maulding HV, Nagele O, Pearson JE (1997) Sustained release formulations of water soluble peptides. United States Patent US 5,639,480

    Google Scholar 

  221. Lambert O, Ausborn M, Petersen H, Löffler R, Bonny J-D (2004) Pharmaceutical composition comprising microparticles. International Publication WO 2004/045633

    Google Scholar 

  222. Petersen H, Ahlheimer M (2007) Sustained release formulation comprising octreotide and two or more polylactide-co-glycolide polymers. International Publication WO 2007/071395

    Google Scholar 

  223. Pellet M, Roume C (2002) Sustained release compositions and the process for their preparation. US Patent US 6,475,507

    Google Scholar 

  224. Okada H, Ionoue Y, Ogawa Y, Toguchi H (1992) Three-month release injectable microspheres of leuprolin acetate. Proc Int Symp Control Rel Bioact Mater 19:52

    Google Scholar 

  225. Okada H, Yamamoto M, Heya T, Inoue Y, Kamei S, Ogawa Y, Toguchi H (1994) Drug-delivery using biodegradable microspheres. J Control Release 28:121–129

    CAS  Google Scholar 

  226. Ogawa Y, Yamamoto M, Takada S, Okada H, Shimamoto T (1988) Controlled-release of leuprolide acetate from polylactic acid or copoly(lactic/glycolic) acid microcapsules: influence of molecular weight and copolymer ratio of polymer. Chem Pharm Bull 36:1502–1507

    PubMed  CAS  Google Scholar 

  227. Okada H, Heya T, Ogawa Y, Shimamoto T (1988) One-month release injectable microcapsules of a luteinizing hormone-releasing hormone agonist (leuprolide acetate) for treating experimental endometriosis in rats. J Pharmacol Exp Ther 244:744–750

    PubMed  CAS  Google Scholar 

  228. Ogawa Y, Okada H, Heya T, Shimamoto T (1989) Controlled release of LHRH agonist, leuprolide acetate, from microcapsules: serum drug level profiles and pharmacological effects in animals. J Pharm Pharmacol 41:439–444

    PubMed  CAS  Google Scholar 

  229. Ogawa Y (1992) Monthly microcapsule-depot form of LHRH agonist, leuprolide acetate (Enantone® Depot): formulation and pharmacokinetics in animals. Eur J Hosp Pharm 2:120–127

    Google Scholar 

  230. Yamamoto M, Takada S, Ogawa Y (1994) Sustained release microcapsule. United States Patent US 5,330,767

    Google Scholar 

  231. Takechi N, Ohtani S, Nagai A (2002) Production of microspheres. European Patent EP 779 072

    Google Scholar 

  232. Nerlich B, Mank R, Gustafsson J, Hörig J, Köchling W (1996) Mikroverkapselung wasserlöslicher Wirkstoffe. European Patent EP 579 347

    Google Scholar 

  233. Mank R, Gustafsson J, Hörig J, Köchling W, Nerlich B (1996) Microencapsulation of water-soluble medicaments. United States Patent US 5,503,851

    Google Scholar 

  234. Klippel KF, Winkler CJ, Jocham D, Rubben H, Moser B, Gulati A (1999) Effectiveness and tolerance of 1 dosage forms (subcutaneous and intramuscular) of decapeptyl depot in patients with advanced prostate carcinoma. Urologe A 38:270–275

    PubMed  CAS  Google Scholar 

  235. Orsolini P (1992) Method for preparing a pharmaceutical composition in the form of microparticles. United States Patent US 5,134,122

    Google Scholar 

  236. Orsolini P (1993) Pharmaceutical composition in the form of microparticles. United States Patent US 5,225,205

    Google Scholar 

  237. Bartus RT, Emerich DF, Hotz J, Blaustein M, Dean RL, Perdomo B, Basile AS (2003) Vivitrex, an injectable, extended-release formulation of naltrexone, provides pharmacokinetic and pharmacodynamic evidence of efficacy for 1 month in rats. Neuropsychopharmacology 28:1973–1982

    PubMed  CAS  Google Scholar 

  238. Rickey ME, Ramstack JM, Lewis DH, Mesens J (1998) Preparation of extended shelf-life biodegradable, biocompatible microparticles containing a biologically active agent. United Staes Patent US 5,792,477

    Google Scholar 

  239. Wright SG, Rickley ME, Ramstack JM, Lyons SL, Hotz JM (2001) Method for preparing microparticles having a selected polymer molecular weight. United States Patent US 6,264,987

    Google Scholar 

  240. Mesens J, Rickey ME, Atkins TJ (2003) Microencapsulated 3-Piperidinyl substituted 1,2-benzisooxazoles and 1,2-benzisothiazoles. United States Patent US 6,544,559

    Google Scholar 

  241. Ramstack JM, Riley MG, Zale SE, Hotz JM, Johnson OL (2003) Preparation of injectable suspensions having improved injectability. United States Patent US 6,667,061

    Google Scholar 

  242. Lyons SL, Wright SG (2004) Apparatus and method for preparing microparticles. United States Patent US 6,713,090

    Google Scholar 

  243. Lyons SL, Wright SG (2005) Method and apparatus for preparing microparticles using in-line solvent extraction. United States Patent US 6,939,033

    Google Scholar 

  244. Lawter JR, Lanzilotti MG (1996) Phase separation-microencapsulated pharmaceuticals compositions useful for alleviating dental disease. United States Patent US 5,500,228

    Google Scholar 

  245. Gedulin BR, Smith P, Prickett KS, Tryon M, Barnhill S, Reynolds J, Nielsen LL, Parkes DG, Young AA (2005) Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia 48:1380–1385

    PubMed  CAS  Google Scholar 

  246. Iwamoto K, Nasu R, Yamamura A, Kothare PA, Mace K, Wolka AM, Linnebjerg H (2009) Safety, tolerability, pharmacokinetics, and pharmacodynamics of exenatide once weekly in Japanese patients with type 2 diabetes. Endocr J 56:951–962

    PubMed  CAS  Google Scholar 

  247. Sandow J, Seidel HR, Krauss B, Jerabek-Sandow G (1987) Pharmacokinetics of LHRH agonist in different deliver systems and the relation to endocrine function. In: Klijn JGM (ed) Hormonal manipulation of cancer: peptides, growth factors, and new (anti)steroidal agents. Raven, New York

    Google Scholar 

  248. Waxman JH, Sandow J, Abel P, Farah N, O’Donoghue EP, Fleming J, Cox J, Sikora K, Williams G (1989) Two-monthly depot gonadotropin releasing hormone agonist (buserelin) for treatment of prostatic cancer. Acta Endocrinol (Copenh) 120:315–318

    CAS  Google Scholar 

  249. Sandow J, Stoeckemann K, Jerabek-Sandow G (1990) Pharmacokinetics and endocrine effects of slow release formulations of LHRH analogues. J Steroid Biochem Mol Biol 37:925–963

    PubMed  CAS  Google Scholar 

  250. Behre HM, Sandow J, Nieschlag E (1992) Pharmacokinetics of the gonadotropin-releasing hormone agonist buserelin after injection of a slow-release preparation in normal men. Arzneimittelforschung 42:80–84

    PubMed  CAS  Google Scholar 

  251. Tamada J, Langer R (1992) The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 3:315–353

    PubMed  CAS  Google Scholar 

  252. Brem H, Gabikian P (2001) Biodegradable polymer implants to treat brain tumors. J Control Release 74:63–67

    PubMed  CAS  Google Scholar 

  253. Greenstein G, Polson A (1998) The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol 69:507–520

    PubMed  CAS  Google Scholar 

  254. Ravivarapu HB, Moyer KL, Dunn RL (2000) Sustained suppression of pituitary-gonadal axis with an injectable, in situ forming implant of leuprolide acetate. J Pharm Sci 89:732–741

    PubMed  CAS  Google Scholar 

  255. Perez-Marreno R, Chu FM, Gleason D, Loizides E, Wachs B, Tyler RC (2002) A six-month, open-label study assessing a new formulation of leuprolide 7.5 mg for suppression of testosterone in patients with prostate cancer. Clin Ther 24:1902–1914

    PubMed  CAS  Google Scholar 

  256. Dunn R, Garrett J, Ravivarapu H, Chandrashekar B (2003) Polymeric delivery formulations of leuprolide with improved efficacy. United States Patent US 6,565,874

    Google Scholar 

  257. Sartor O (2003) Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61:25–31

    PubMed  Google Scholar 

  258. Perez-Marrero I, Tyler RC (2004) A subcutaneous delivery system for the extended release of leuprolide acetate for the treatment of prostate cancer. Expert Opin Pharmacother 5:447–457

    PubMed  CAS  Google Scholar 

  259. ICH (2003) Guidance for industry, Q3C impurities: Residual solvents. U.S. Department of Health and Human Services, Food and Drug Administration (FDA). http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128317.pdf and http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128282.pdf%20

  260. Wang LW, Venkatraman S, Gan LH, Kleiner L (2005) Structure formation in injectable poly(lactide-co-glycolide) depots. II. Nature of the gel. J Biomed Mater Res B 72B:215–222

    CAS  Google Scholar 

  261. Lambert WJ, Peck KD (1995) Development of an in situ forming biodegradable poly-lactide-co-glycolide system for the controlled release of proteins. J Control. Rel. 33:189–195

    CAS  Google Scholar 

  262. Wischke C, Zhang Y, Mittal S, Schwendeman S (2010) Development of PLGA-based injectable delivery systems for hydrophobic fenretinide. Pharm. Res. 27:2063–2074

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wischke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer US

About this chapter

Cite this chapter

Wischke, C., Schwendeman, S.P. (2012). Degradable Polymeric Carriers for Parenteral Controlled Drug Delivery. In: Siepmann, J., Siegel, R., Rathbone, M. (eds) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0881-9_8

Download citation

Publish with us

Policies and ethics