Skip to main content

Tissue Engineering in Drug Delivery

  • Chapter
  • First Online:
Fundamentals and Applications of Controlled Release Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 4803 Accesses

Abstract

Over the last 20 years, the fields of tissue engineering and regenerative medicine have emerged with the goals of restoring, maintaining, or improving tissue function. This is currently addressed with the creation of biologically active biomaterials or scaffolds seeded with either progenitor or differentiated cells that substitute for tissue or organs. Paracrine factors or other drugs are incorporated into these scaffolds to promote tissue regeneration and function. Precise control of both timing and presentation of these drugs is necessary for sufficient efficacy. This chapter provides an overview of the common biomaterials and drugs encountered in bone, cartilage, neural, and cardiovascular tissue engineering, as well as current strategies and future directions for drug delivery in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70(3):837–845

    PubMed  CAS  Google Scholar 

  2. Barrilleaux B, Phinney DG, Prockop DJ, O’Connor KC (2006) Review: Ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12(11):3007–3019

    PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    PubMed  CAS  Google Scholar 

  4. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    PubMed  CAS  Google Scholar 

  5. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2(8):8

    Google Scholar 

  6. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    PubMed  CAS  Google Scholar 

  7. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    PubMed  CAS  Google Scholar 

  8. Yoo JJ, Atala A (1997) A novel gene delivery system using urothelial tissue engineered neo-organs. J Urol 158(3 Pt 2):1066–1070

    PubMed  CAS  Google Scholar 

  9. Saraf A, Mikos AG (2006) Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev 58(4):592–603

    PubMed  CAS  Google Scholar 

  10. Li Z, Sharma RV, Duan D, Davisson RL (2003) Adenovirus-mediated gene transfer to adult mouse cardiomyocytes is selectively influenced by culture medium. J Gene Med 5(9):765–772

    PubMed  CAS  Google Scholar 

  11. Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R, Evans CH, Vunjak-Novakovic G, Kaplan DL (2006) Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials 27(28):4993–5002

    PubMed  CAS  Google Scholar 

  12. Capito RM, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 14(9):721–732

    PubMed  CAS  Google Scholar 

  13. Glick BR, Pasternak JJ (1998) Molecular biotechnology: principles and applications of recombinant DNA. ASM, Washington, DC

    Google Scholar 

  14. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Korner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Muller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K (2004) New non-viral method for gene transfer into primary cells. Methods 33(2):151–163

    PubMed  CAS  Google Scholar 

  15. van Blitterswijk C (2008) Tissue engineering. Academic, London

    Google Scholar 

  16. Tran-Khanh N, Hoemann CD, McKee MD, Henderson JE, Buschmann MD (2005) Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J Orthop Res 23(6):1354–1362

    PubMed  CAS  Google Scholar 

  17. Biondi M, Ungaro F, Quaglia F, Netti PA (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60(2):229–242

    PubMed  CAS  Google Scholar 

  18. Allori AC, Sailon AM, Warren SM (2008) Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix. Tissue Eng B Rev 14(3):275–283

    CAS  Google Scholar 

  19. Marquis ME, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, Senta H, Faucheux N (2009) Bone cells-biomaterials interactions. Front Biosci 14:1023–1067

    PubMed  CAS  Google Scholar 

  20. Heino TJ, Hentunen TA, Vaananen HK (2004) Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 294(2):458–468

    PubMed  CAS  Google Scholar 

  21. Cartmell S (2009) Controlled release scaffolds for bone tissue engineering. J Pharm Sci 98(2):430–441

    PubMed  CAS  Google Scholar 

  22. Shi X, Wang Y, Varshney RR, Ren L, Gong Y, Wang DA (2010) Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Eur J Pharm Sci 39(1–3):59–67

    PubMed  CAS  Google Scholar 

  23. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90(Suppl 1):36–42

    PubMed  Google Scholar 

  24. Jayasuriya AC, Shah C (2008) Controlled release of insulin-like growth factor-1 and bone marrow stromal cell function of bone-like mineral layer-coated poly(lactic-co-glycolic acid) scaffolds. J Tissue Eng Regen Med 2(1):43–49

    PubMed  CAS  Google Scholar 

  25. Woodfield TB, Bezemer JM, Pieper JS, van Blitterswijk CA, Riesle J (2002) Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr 12(3):209–236

    PubMed  CAS  Google Scholar 

  26. Fan H, Zhang C, Li J, Bi L, Qin L, Wu H, Hu Y (2008) Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 9(3):927–934

    PubMed  CAS  Google Scholar 

  27. Klein TJ, Rizzi SC, Reichert JC, Georgi N, Malda J, Schuurman W, Crawford RW, Hutmacher DW (2009) Strategies for zonal cartilage repair using hydrogels. Macromol Biosci 9(11):1049–1058

    PubMed  CAS  Google Scholar 

  28. Sohier J, Moroni L, van Blitterswijk C, de Groot K, Bezemer JM (2008) Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin Drug Deliv 5(5):543–566

    PubMed  CAS  Google Scholar 

  29. Kerker JT, Leo AJ, Sgaglione NA (2008) Cartilage repair: synthetics and scaffolds: basic science, surgical techniques, and clinical outcomes. Sports Med Arthrosc 16(4):208–216

    PubMed  Google Scholar 

  30. Temenoff JS, Mikos AG (2000) Review: Tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    PubMed  CAS  Google Scholar 

  31. Slater BJ, Kwan MD, Gupta DM, Panetta NJ, Longaker MT (2008) Mesenchymal cells for skeletal tissue engineering. Expert Opin Biol Ther 8(7):885–893

    PubMed  CAS  Google Scholar 

  32. AAOS (2008) In: Katz SI (ed) Burden of musculoskeletal diseases in the United States: Prevalence, Societal and Economic Cost. AAOS, Washington, DC

    Google Scholar 

  33. Mourino V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209

    PubMed  CAS  Google Scholar 

  34. Yoshida T, Kikuchi M, Koyama Y, Takakuda K (2010) Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges. J Mater Sci Mater Med 21(4):1263–72

    PubMed  CAS  Google Scholar 

  35. Sahoo S, Chung C, Khetan S, Burdick JA (2008) Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules 9(4):1088–1092

    PubMed  CAS  Google Scholar 

  36. Tortelli F, Cancedda R (2009) Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur Cell Mater 17:1–14

    PubMed  CAS  Google Scholar 

  37. Hosseinkhani H, Inatsugu Y, Hiraoka Y, Inoue S, Tabata Y (2005) Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic Acid) fiber. Tissue Eng 11(9–10):1476–1488

    PubMed  CAS  Google Scholar 

  38. Ratner BD (2004) Biomaterials science: an introduction to materials in medicine. Elsevier Academic, Amsterdam

    Google Scholar 

  39. Diniz Oliveira HF, Weiner AA, Majumder A, Shastri VP (2008) Non-covalent surface engineering of an alloplastic polymeric bone graft material for controlled protein release. J Control Release 126(3):237–245

    PubMed  CAS  Google Scholar 

  40. Espanol M, Perez RA, Montufar EB, Marichal C, Sacco A, Ginebra MP (2009) Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater 5(7):2752–2762

    PubMed  CAS  Google Scholar 

  41. Weir MD, Xu HH (2008) High-strength, in situ-setting calcium phosphate composite with protein release. J Biomed Mater Res A 85(2):388–396

    PubMed  Google Scholar 

  42. Wu C, Zreiqat H (2009) Porous bioactive diopside (CaMgSi(2)O(6)) ceramic microspheres for drug delivery. Acta Biomater 6(3):820–9

    PubMed  Google Scholar 

  43. Stoddart MJ, Grad S, Eglin D, Alini M (2009) Cells and biomaterials in cartilage tissue engineering. Regen Med 4(1):81–98

    PubMed  CAS  Google Scholar 

  44. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344

    PubMed  CAS  Google Scholar 

  45. Zheng L, Fan HS, Sun J, Chen XN, Wang G, Zhang L, Fan YJ, Zhang XD (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93(2):783–92

    PubMed  CAS  Google Scholar 

  46. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3(8):1894–1904

    PubMed  CAS  Google Scholar 

  47. Sage A, Chang AA, Schumacher BL, Sah RL, Watson D (2009) Cartilage outgrowth in fibrin scaffolds. Am J Rhinol Allergy 23(5):486–491

    PubMed  Google Scholar 

  48. Zhang G, Wang X, Wang Z, Zhang J, Suggs L (2006) A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng 12(1):9–19

    PubMed  CAS  Google Scholar 

  49. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    PubMed  CAS  Google Scholar 

  50. Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88(3):379–391

    PubMed  CAS  Google Scholar 

  51. Uebersax L, Merkle HP, Meinel L (2008) Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 127(1):12–21

    PubMed  CAS  Google Scholar 

  52. Motta A, Maniglio D, Migliaresi C, Kim HJ, Wan X, Hu X, Kaplan DL (2009) Silk fibroin processing and thrombogenic responses. J Biomater Sci Polym Ed 20(13):1875–1897

    PubMed  CAS  Google Scholar 

  53. Ghidoni I, Chlapanidas T, Bucco M, Crovato F, Marazzi M, Vigo D, Torre ML, Faustini M (2008) Alginate cell encapsulation: new advances in reproduction and cartilage regenerative medicine. Cytotechnology 58(1):49–56

    PubMed  CAS  Google Scholar 

  54. Kock LM, Schulz RM, van Donkelaar CC, Thummler CB, Bader A, Ito K (2009) RGD-dependent integrins are mechanotransducers in dynamically compressed tissue-engineered cartilage constructs. J Biomech 42(13):2177–2182

    PubMed  Google Scholar 

  55. Gong Y, He L, Li J, Zhou Q, Ma Z, Gao C, Shen J (2007) Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 82(1):192–204

    PubMed  Google Scholar 

  56. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222

    PubMed  CAS  Google Scholar 

  57. Dai W, Kawazoe N, Lin X, Dong J, Chen G (2010) The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 31(8):2141–52

    PubMed  CAS  Google Scholar 

  58. Kawazoe N, Inoue C, Tateishi T, Chen G (2010) A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering. Biotechnol Prog 26(3):819–26

    PubMed  CAS  Google Scholar 

  59. Prabaharan M, Rodriguez-Perez MA, de Saja JA, Mano JF (2007) Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B Appl Biomater 81(2):427–434

    PubMed  CAS  Google Scholar 

  60. Klompmaker J, Jansen HW, Veth RP, de Groot JH, Nijenhuis AJ, Pennings AJ (1991) Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 12(9):810–816

    PubMed  CAS  Google Scholar 

  61. Cao T, Ho KH, Teoh SH (2003) Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng 9(Suppl 1):S103–112

    PubMed  CAS  Google Scholar 

  62. Knippenberg M, Helder MN, Zandieh Doulabi B, Wuisman PI, Klein-Nulend J (2006) Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun 342(3):902–908

    PubMed  CAS  Google Scholar 

  63. Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Preparation and characterization of chitosan microspheres for controlled release of synthetic oligopeptide derived from BMP-2. J Microencapsul 26(4):297–305

    PubMed  CAS  Google Scholar 

  64. Haidar ZS, Hamdy RC, Tabrizian M (2009) Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol Lett 31(12):1825–1835

    PubMed  CAS  Google Scholar 

  65. Engstrand T, Veltheim R, Arnander C, Docherty-Skogh AC, Westermark A, Ohlsson C, Adolfsson L, Larm O (2008) A novel biodegradable delivery system for bone morphogenetic protein-2. Plast Reconstr Surg 121(6):1920–1928

    PubMed  CAS  Google Scholar 

  66. Yamamoto M, Takahashi Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24(24):4375–4383

    PubMed  CAS  Google Scholar 

  67. Barnes B, Boden SD, Louis-Ugbo J, Tomak PR, Park JS, Park MS, Minamide A (2005) Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine 30(10):1127–1133

    PubMed  Google Scholar 

  68. Woo BH, Jiang G, Jo YW, DeLuca PP (2001) Preparation and characterization of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery. Pharm Res 18(11):1600–1606

    PubMed  CAS  Google Scholar 

  69. Kim HD, Valentini RF (2002) Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 59(3):573–584

    PubMed  CAS  Google Scholar 

  70. De la Riva B, Nowak C, Sanchez E, Hernandez A, Schulz-Siegmund M, Pec MK, Delgado A, Evora C (2009) VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. Eur J Pharm Biopharm 73(1):50–58

    PubMed  Google Scholar 

  71. Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 10(6):1392–1401

    PubMed  Google Scholar 

  72. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage – a template for tissue repair. Clin Orthop Rel Res 391:S26–S33

    Google Scholar 

  73. DeFail AJ, Chu CR, Izzo N, Marra KG (2006) Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels. Biomaterials 27(8):1579–1585

    PubMed  CAS  Google Scholar 

  74. Jung Y, Chung YI, Kim SH, Tae G, Kim YH, Rhie JW (2009) In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-beta1 loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex. Biomaterials 30(27):4657–4664

    PubMed  CAS  Google Scholar 

  75. Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101(1–3):111–125

    PubMed  CAS  Google Scholar 

  76. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, Kim HJ, Seong SC, Lee MC (2004) Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25(18):4163–4173

    PubMed  CAS  Google Scholar 

  77. Lee JE, Kim SE, Kwon IC, Ahn HJ, Cho H, Lee SH, Kim HJ, Seong SC, Lee MC (2004) Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Artif Organs 28(9):829–839

    PubMed  CAS  Google Scholar 

  78. Sohier J, Hamann D, Koenders M, Cucchiarini M, Madry H, van Blitterswijk C, de Groot K, Bezemer JM (2007) Tailored release of TGF-beta1 from porous scaffolds for cartilage tissue engineering. Int J Pharm 332(1–2):80–89

    PubMed  CAS  Google Scholar 

  79. Fan H, Hu Y, Li X, Wu H, Lv R, Bai J, Wang J, Qin L (2006) Ectopic cartilage formation induced by mesenchymal stem cells on porous gelatin-chondroitin-hyaluronate scaffold containing microspheres loaded with TGF-beta1. Int J Artif Organs 29(6):602–611

    PubMed  CAS  Google Scholar 

  80. Huang AH, Stein A, Tuan RS, Mauck RL (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng A 15(11):3461–3472

    CAS  Google Scholar 

  81. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF (2010) Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone marrow-derived mesenchymal stem cells. Tissue Eng A 16(3):1009–19

    Google Scholar 

  82. Igai H, Yamamoto Y, Chang SS, Yamamoto M, Tabata Y, Yokomise H (2007) Tracheal cartilage regeneration by slow release of basic fibroblast growth factor from a gelatin sponge. J Thorac Cardiovasc Surg 134(1):170–175

    PubMed  Google Scholar 

  83. Chen FM, Chen R, Wang XJ, Sun HH, Wu ZF (2009) In vitro cellular responses to scaffolds containing two microencapulated growth factors. Biomaterials 30(28):5215–5224

    PubMed  CAS  Google Scholar 

  84. Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG (2009) Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A 88(4):889–897

    PubMed  Google Scholar 

  85. Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 19(6):1098–1104

    PubMed  CAS  Google Scholar 

  86. Taylor CA, Braza D, Rice JB, Dillingham T (2008) The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil 87(5):381–385

    PubMed  Google Scholar 

  87. Chen L, Gu YD, Xu L (2004) Clinical application of axonal repair technique for treatment of peripheral nerve injury. Chin J Traumatol 7(3):153–155

    PubMed  Google Scholar 

  88. Flores AJ, Lavernia CJ, Owens PW (2000) Anatomy and physiology of peripheral nerve injury and repair. Am J Orthop (Belle Mead NJ) 29(3):167–173

    CAS  Google Scholar 

  89. Wu D, Zhao D (1997) Tissue engineering study on repairment of injured nerve gap in rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 14(2):108–110

    PubMed  CAS  Google Scholar 

  90. Ichihara S, Inada Y, Nakamura T (2008) Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury 39(Suppl 4):29–39

    PubMed  Google Scholar 

  91. Yuan JD, Nie WB, Fu Q, Lian XF, Hou TS, Tan ZQ (2009) Novel three-dimensional nerve tissue engineering scaffolds and its biocompatibility with Schwann cells. Chin J Traumatol 12(3):133–137

    PubMed  CAS  Google Scholar 

  92. Hudson TW, Evans GRD, Schmidt CE (1999) Engineering strategies for peripheral nerve repair. Clin Plast Surg 26(4):617

    PubMed  CAS  Google Scholar 

  93. Martin BC, Minner EJ, Wiseman SL, Klank RL, Gilbert RJ (2008) Agarose and methylcellulose hydrogel blends for nerve regeneration applications. J Neural Eng 5(2):221–231

    PubMed  Google Scholar 

  94. Labrador RO, Buti M, Navarro X (1995) Peripheral nerve repair: role of agarose matrix density on functional recovery. Neuroreport 6(15):2022–2026

    PubMed  CAS  Google Scholar 

  95. Koopmans G, Hasse B, Sinis N (2009) Chapter 19: The role of collagen in peripheral nerve repair. Int Rev Neurobiol 87:363–379

    PubMed  CAS  Google Scholar 

  96. Kemp SW, Syed S, Walsh W, Zochodne DW, Midha R (2009) Collagen nerve conduits promote enhanced axonal regeneration, schwann cell association, and neovascularization compared to silicone conduits. Tissue Eng A 15(8):1975–1988

    CAS  Google Scholar 

  97. Kalbermatten DF, Pettersson J, Kingham PJ, Pierer G, Wiberg M, Terenghi G (2009) New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg 25(1):27–33

    PubMed  Google Scholar 

  98. Choi BH, Han SG, Kim SH, Zhu SJ, Huh JY, Jung JH, Lee SH, Kim BY (2005) Autologous fibrin glue in peripheral nerve regeneration in vivo. Microsurgery 25(6):495–499

    PubMed  Google Scholar 

  99. Martins RS, Siqueira MG, Da Silva CF, Plese JP (2005) Overall assessment of regeneration in peripheral nerve lesion repair using fibrin glue, suture, or a combination of the 2 techniques in a rat model. Which is the ideal choice? Surg Neurol 64(Suppl 1):10–16; discussion S11:16

    Google Scholar 

  100. Jansen K, van der Werff JF, van Wachem PB, Nicolai JP, de Leij LF, van Luyn MJ (2004) A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 25(3):483–489

    PubMed  CAS  Google Scholar 

  101. Colen KL, Choi M, Chiu DT (2009) Nerve grafts and conduits. Plast Reconstr Surg 124(6 Suppl):e386–394

    PubMed  CAS  Google Scholar 

  102. Guo SZ, Ren XJ, Wu B, Jiang T (2010) Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility. Spinal Cord 48(7):576–81

    PubMed  Google Scholar 

  103. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108

    PubMed  Google Scholar 

  104. Madigan NN, McMahon S, O’Brien T, Yaszemski MJ, Windebank AJ (2009) Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir Physiol Neurobiol 169(2):183–199

    PubMed  CAS  Google Scholar 

  105. Pfister LA, Papaloizos M, Merkle HP, Gander B (2007) Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 12(2):65–82

    PubMed  CAS  Google Scholar 

  106. Yang Y, De Laporte L, Rives CB, Jang JH, Lin WC, Shull KR, Shea LD (2005) Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release 104(3):433–446

    PubMed  CAS  Google Scholar 

  107. Houweling DA, Lankhorst AJ, Gispen WH, Bar PR, Joosten EA (1998) Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp Neurol 153(1):49–59

    PubMed  CAS  Google Scholar 

  108. Yu X, Bellamkonda RV (2003) Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. Tissue Eng 9(3):421–430

    PubMed  CAS  Google Scholar 

  109. Taylor SJ, Sakiyama-Elbert SE (2006) Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. J Control Release 116(2):204–210

    PubMed  CAS  Google Scholar 

  110. Kapur TA, Shoichet MS (2003) Chemically-bound nerve growth factor for neural tissue engineering applications. J Biomater Sci Polym Ed 14(4):383–394

    PubMed  CAS  Google Scholar 

  111. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    PubMed  CAS  Google Scholar 

  112. Laube HR, Duwe J, Rutsch W, Konertz W (2000) Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg 120(1):134–141

    PubMed  CAS  Google Scholar 

  113. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400

    PubMed  CAS  Google Scholar 

  114. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56

    PubMed  Google Scholar 

  115. Ennett AB, Mooney DJ (2002) Tissue engineering strategies for in vivo neovascularisation. Expert Opin Biol Ther 2(8):805–818

    PubMed  CAS  Google Scholar 

  116. Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D, Kehayov I, Kolev V, Soldi R, Bagala C, de Muinck ED, Lindner V, Post MJ, Simons M, Bellum S, Prudovsky I, Maciag T (2003) Copper chelation represses the vascular response to injury. Proc Natl Acad Sci USA 100(11):6700–6705

    PubMed  CAS  Google Scholar 

  117. Post MJ, Simons M (2003) The rational phase of therapeutic angiogenesis. Minerva Cardioangiol 51(5):421–432

    PubMed  CAS  Google Scholar 

  118. Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB (1990) Recombinant latent transforming growth factor-beta-1 has a longer plasma half-life in rats than active transforming growth factor-beta-1, and a different tissue distribution. J Clin Invest 86(6):1976–1984

    PubMed  CAS  Google Scholar 

  119. Boyer M, Townsend LE, Vogel LM, Falk J, Reitz-Vick D, Trevor KT, Villalba M, Bendick PJ, Glover JL (2000) Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vasc Surg 31(1 Pt 1):181–189

    PubMed  CAS  Google Scholar 

  120. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112

    PubMed  CAS  Google Scholar 

  121. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM (2002) Smooth muscle progenitor cells in human blood. Circulation 106(10):1199–1204

    PubMed  CAS  Google Scholar 

  122. Seruya M, Shah A, Pedrotty D, du Laney T, Melgiri R, McKee JA, Young HE, Niklason LE (2004) Clonal population of adult stem cells: life span and differentiation potential. Cell Transplant 13(2):93–101

    PubMed  Google Scholar 

  123. Grassl ED, Oegema TR, Tranquillo RT (2002) Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res 60(4):607–612

    PubMed  CAS  Google Scholar 

  124. Isenberg BC, Willilams C, Tranquillo RT (2006) Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann Biomed Eng V34(6):971–985

    Google Scholar 

  125. Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96(12):3772–3778

    PubMed  CAS  Google Scholar 

  126. Sahni A, Odrljin T, Francis CW (1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273(13):7554–7559

    PubMed  CAS  Google Scholar 

  127. Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC (1995) Release and activation of platelet latent TGF-Beta in blood-clots during dissolution with plasmin. Nat Med 1(9):932–937

    PubMed  CAS  Google Scholar 

  128. Ishii I, Mizuta H, Sei A, Hirose J, Kudo S, Hiraki Y (2007) Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br 89(5):693–700

    PubMed  CAS  Google Scholar 

  129. Giannoni P, Hunziker EB (2003) Release kinetics of transforming growth factor-beta1 from fibrin clots. Biotechnol Bioeng 83(1):121–123

    PubMed  CAS  Google Scholar 

  130. Catelas I, Dwyer JF, Helgerson S (2008) Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro. Tissue Eng C Methods 14(2):119–128

    CAS  Google Scholar 

  131. Drinnan CT, Zhang G, Alexander MA, Pulido AS, Suggs LJ (2010) Multimodal release of transforming growth factor-beta1 and the BB isoform of platelet derived growth factor from PEGylated fibrin gels. J Control Release 147(2):180–6

    PubMed  CAS  Google Scholar 

  132. Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402

    PubMed  CAS  Google Scholar 

  133. Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA (2001) Covalently conjugated VEGF-fibrin matrices for endothelialization. J Control Release 72(1–3):101–113

    PubMed  CAS  Google Scholar 

  134. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28(4):351–362

    PubMed  CAS  Google Scholar 

  135. Suuronen EJ, Veinot JP, Wong S, Kapila V, Price J, Griffith M, Mesana TG, Ruel M (2006) Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation 114:138–144

    Google Scholar 

  136. Gong ZD, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22(6):1635–1648

    PubMed  CAS  Google Scholar 

  137. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051

    PubMed  CAS  Google Scholar 

  138. Mann BK, West JL (2002) Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res 60(1):86–93

    PubMed  CAS  Google Scholar 

  139. Mann BK, Schmedlen RH, West JL (2001) Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22(5):439–444

    PubMed  CAS  Google Scholar 

  140. Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20(12):1763–1779

    PubMed  CAS  Google Scholar 

  141. Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL (2009) Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A 15(3):579–585

    CAS  Google Scholar 

  142. King TW, Patrick CW (2000) Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res 51(3):383–390

    PubMed  CAS  Google Scholar 

  143. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034

    PubMed  CAS  Google Scholar 

  144. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365

    PubMed  CAS  Google Scholar 

  145. Wong C, Inman E, Spaethe R, Helgerson S (2003) Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost 89(3):573–582

    PubMed  CAS  Google Scholar 

  146. Koch S, Yao C, Grieb G, Prevel P, Noah EM, Steffens GCM (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17(8):735–741

    PubMed  CAS  Google Scholar 

  147. Ravin AG, Olbrich KC, Levin LS, Usala AL, Klitzman B (2001) Long- and short-term effects of biological hydrogels on capsule microvascular density around implants in rats. J Biomed Mater Res 58(3):313–318

    PubMed  CAS  Google Scholar 

  148. Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26(19):4171–4179

    PubMed  CAS  Google Scholar 

  149. Nugent MA, Iozzo RV (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32(2):115–120

    PubMed  CAS  Google Scholar 

  150. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178

    PubMed  CAS  Google Scholar 

  151. Wiedlocha A, Sorensen V (2004) Signaling, internalization, and intracellular activity of fibroblast growth factor, signalling from internalized growth factor receptors, vol 286. Springer, Berlin, pp 45–79

    Google Scholar 

  152. Thompson JA, Anderson KD, Dipietro JM, Zwiebel JA, Zametta M, Anderson WF, Maciag T (1988) Site-directed neovessel formation in vivo. Science 241(4871):1349–1352

    PubMed  CAS  Google Scholar 

  153. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65A(4):489–497

    CAS  Google Scholar 

  154. Darland DC, D’Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4(1):11–20

    PubMed  CAS  Google Scholar 

  155. Isner JM, Takayuki A (1998) Therapeutic angiogenesis. Front Biosci 3:e49–69

    PubMed  CAS  Google Scholar 

  156. Ahrendt G, Chickering DE, Ranieri JP (1998) Angiogenic growth factors: a review for tissue engineering. Tissue Eng 4(2):117–130

    CAS  Google Scholar 

  157. Li J, Zhang YP, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60(1):107–114

    PubMed  CAS  Google Scholar 

  158. Wang D, Park JS, Chu JS, Krakowski A, Luo K, Chen DJ, Li S (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279(42):43725–43734

    PubMed  CAS  Google Scholar 

  159. Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT, Verfaillie CM (2006) Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 116(12):3139–49

    PubMed  CAS  Google Scholar 

  160. Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, Zhang J (2007) Controlled release of stromal cell derived Factor-1 alpha in situ increases C-kit+ cell homing to the infarcted heart. Tissue Eng 13(8):2063–2071

    PubMed  CAS  Google Scholar 

  161. Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J (2008) Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng A 14(6):1025–1036

    CAS  Google Scholar 

  162. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84(3):298–305

    PubMed  CAS  Google Scholar 

  163. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-B, and heterotpic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to smooth muscle fate. J Cell Biol 141(3):805–814

    PubMed  CAS  Google Scholar 

  164. Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU, Homann HH (2004) Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J Biomed Mater Res A 68A(1):10–18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Suggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer US

About this chapter

Cite this chapter

Drinnan, C.T., Geuss, L.R., Zhang, G., Suggs, L.J. (2012). Tissue Engineering in Drug Delivery. In: Siepmann, J., Siegel, R., Rathbone, M. (eds) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0881-9_17

Download citation

Publish with us

Policies and ethics