Biological Rhythms, Drug Delivery, and Chronotherapeutics

  • Michael H. Smolensky
  • Ronald A. Siegel
  • Erhard Haus
  • Ramon Hermida
  • Francesco Portaluppi
Part of the Advances in Delivery Science and Technology book series (ADST)


Biological processes are highly structured in time as endogenously derived rhythms of short, intermediate, and long periods, with the circadian (24h) time structure most studied. Staging of key physiological and biochemical circadian rhythms gives rise to 24-h patterns in the exacerbation of chronic medical conditions, including arthritis, asthma, ulcer, and hypertension, plus manifestation of acute severe morbid and mortal events, such as myocardial infarction, stroke, and sudden cardiac death. Body rhythms may also significantly affect patient response to diagnostic tests and pharmacokinetics, pharmacodynamics, and toxicities of diverse classes of medications. This chapter reviews circadian and other period biological rhythm dependencies of the pathophysiology of disease and pharmacology of medications as the basis for chronotherapeutics and development of time-modulated drug-delivery systems.


Growth Hormone Circadian Rhythm Drug Delivery System Circadian Clock Growth Hormone Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Reinberg A, Smolensky MH (1983) Biologic rhythms and medicine. cellular, metabolic, pathophysiologic, and pharmacologic aspects. Springer, HeidelbergGoogle Scholar
  2. 2.
    Touitou Y, Haus E (eds) (1992) Biologic rhythms in clinical and laboratory medicine. Springer, HeidelbergGoogle Scholar
  3. 3.
    Haus E, Touitou Y (1992) Principles of clinical chronobiology. In: Touitou Y Haus E (eds) Biological rhythms in clinical and laboratory medicine. New York, Springer, pp 6–34Google Scholar
  4. 4.
    Donahue JL, Lowenthal DT (1997) Nocturnal polyuria in the elderly person. Am J Med Sci 314:232–238PubMedGoogle Scholar
  5. 5.
    Kallas HE, Chintanadilok J, Maruenda J, Donahue JL, Lowenthal DT (1999) A clinical investigation of nocturnal polyuria in patients with nocturia: a diurnal variation in arginine vasopressin secretion and its relevance to mean blood pressure. Drugs Aging 15:429–437PubMedGoogle Scholar
  6. 6.
    Smolensky MH, Halberg F (1977) Circadian rhythm in airway patency and lung volumes. In: McGovern JP, Smolensky MH, Reinberg A, Thomas CC (eds) Chronobiology in allergy and immunology. Springfield, Illinois, pp 117–138Google Scholar
  7. 7.
    Halberg F, Simpson H (1967) Circadian acrophases of human 17-hydroxycorticosteroid excretion referred to midsleep rather than midnight. Hum Biol 39:405–413PubMedGoogle Scholar
  8. 8.
    Reinberg A (1979) Chronobiologic field trials of oil refinery shift workers. Chronobiologia 6(Suppl 1):1–119Google Scholar
  9. 9.
    Reinberg A, Smolensky MH (1992) Night and shift work and transmeridian and space flights. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 242–255Google Scholar
  10. 10.
    Dardente H, Cermakian N (2007) Review: molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24:195–214PubMedGoogle Scholar
  11. 11.
    Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26:1479–1513PubMedGoogle Scholar
  12. 12.
    Hanifin JP, Brainard GC (2007) Photoreception for circadian, neuroendocrine, and neurobehavioral regulation. J Physiol Anthropol 26:87–94PubMedGoogle Scholar
  13. 13.
    Maronde E, Stehle JH (2007) The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol Metab 18:142–149PubMedGoogle Scholar
  14. 14.
    Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102PubMedGoogle Scholar
  15. 15.
    Wever RA (1979) The circadian system of man, results of experiments under temporal isolation. Springer, New YorkGoogle Scholar
  16. 16.
    Pezuk P, Mohawk JA, Yoshikawa T, Sellix MT, Menaker M (2010) Circadian organization is governed by extra-SCN pacemakers. J Biol Rhythms 25:432–441PubMedGoogle Scholar
  17. 17.
    Khalsa SB, Jewett ME, Cajochen C, Czeisler CA (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549:945–952PubMedGoogle Scholar
  18. 18.
    Lagoguey M, Reinberg A, Legrand JC (1981) Variations chronobiologiques de la response testiculaire a l’HCG chez l’homme adulte sain. Ann Endocrinol 41:59–60Google Scholar
  19. 19.
    Lagoguey M, Reinberg A (1981) Circadian and circannual changes of pituitary hormones in healthy human males. In: Van Cauter E, Copinschi G (eds) Human pituitary hormones. Martinus Nijhoff Publ, The Hague, pp 261–285Google Scholar
  20. 20.
    Reinberg A (1983) Clinical chronopharmacology: an experimental basis for chronotherapy. In: Reinberg A, Smolensky MH (eds) Biologic rhythms and medicine. cellular, metabolic, pathophysiologic, and pharmacologic aspects. Springer, Heidelberg, pp 243–248Google Scholar
  21. 21.
    Smolensky MH, Peppas N (2007) Chronobiology, drug delivery, and chronotherapeutics. Adv Drug Deliv Rev 59:828–851PubMedGoogle Scholar
  22. 22.
    Folkard S (2008) Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm. Chronobiol Int 25:215–224PubMedGoogle Scholar
  23. 23.
    Horne JA, Östberg O (1976) A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int J Chronobiol 4:97–110PubMedGoogle Scholar
  24. 24.
    Duffy JF, Rimmer DW, Czeisler CA (2001) Association of intrinsic circadian period with morningness–eveningness, usual wake time, and circadian phase. Behav Neurosci 115:895–899PubMedGoogle Scholar
  25. 25.
    Roenneberg T, Wirtz-Justice A, Merrow M (2003) Life between the clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18:80–90PubMedGoogle Scholar
  26. 26.
    Baehr EK, Revelle W, Eastman CI (2000) Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness–eveningness. J Sleep Res 9:117–127PubMedGoogle Scholar
  27. 27.
    Bailey SL, Heitkemper MM (2001) Circadian rhythmicity of cortisol and body temperature: morningness–eveningness effects. Chronobiol Int 18:249–261PubMedGoogle Scholar
  28. 28.
    Duffy JF, Dijk DJ, Hall EF, Czeisler CA (1999) Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Investig Med 47:141–150PubMedGoogle Scholar
  29. 29.
    Burgess HJ, Sharkey KM, Eastman CI (2002) Bright light, dark and melatonin can promote circadian adaptation in night shift workers. Sleep Med Rev 6:407–420PubMedGoogle Scholar
  30. 30.
    Lewy AJ, Bauer VK, Ahmed S, Thomas KH, Cutler NL, Singer CM, Moffit MT, Sack RL (1998) The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 15:71–83PubMedGoogle Scholar
  31. 31.
    Minors DS, Waterhouse JM, Wirz-Justice A (1991) A human phase-response curve to light. Neurosci Lett 133:36–40PubMedGoogle Scholar
  32. 32.
    Brismar K, Hylander B, Eliasson K, Rössner S, Wetterberg L (1988) Melatonin secretion related to side-effects of beta-blockers from the central nervous system. Acta Med Scand 223:525–530PubMedGoogle Scholar
  33. 33.
    Nathan PJ, Maguire KP, Burrows GD, Norman TR (1997) The effect of atenolol, a beta1-adrenergic antagonist, on nocturnal plasma melatonin secretion: evidence for a dose-response relationship in humans. J Pineal Res 23:131–135PubMedGoogle Scholar
  34. 34.
    Stoschitzky K, Sakotnik A, Lercher P, Zweiker R, Maier R, Liebmann P, Lindner W (1999) Influence of beta-blockers on melatonin release. Eur J Clin Pharmacol 55:111–115PubMedGoogle Scholar
  35. 35.
    Stoschitzky K, Stoschitzky G, Brussee H, Bonelli C, Dobnig H (2006) Comparing beta-blocking effects of bisoprolol, carvedilol and nebivolol. Cardiology 106:199–206PubMedGoogle Scholar
  36. 36.
    Conlon M, Lightfoot N, Kreiger N (2007) Rotating shift work and risk of prostate cancer. Epidemiology 18:182–183PubMedGoogle Scholar
  37. 37.
    Deacon S, English J, Tate J, Arendt J (1998) Atenolol facilitates light-induced phase shifts in humans. Neurosci Lett 242:53–56PubMedGoogle Scholar
  38. 38.
    Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2002) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568Google Scholar
  39. 39.
    Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828PubMedGoogle Scholar
  40. 40.
    Lewy A, Emens JS, Lefler BJ, Yuhas K, Jackman AR (2005) Melatonin entrains free-running blind people according to a physiological dose–response curve. Chronobiol Int 22:1093–1106PubMedGoogle Scholar
  41. 41.
    Lewy AJ, Emens J, Jackman A, Yuhas K (2006) Circadian uses of melatonin in humans. Chronobiol Int 23:403–412PubMedGoogle Scholar
  42. 42.
    Hoban TM, Sack RL, Lewy AJ, Miller LS, Singer CM (1989) Entrainment of a free-running human with bright light? Chronobiol Int 6:347–353PubMedGoogle Scholar
  43. 43.
    Costa G, Di Milia L (2008) Aging and shift work. A complex problem to face. Chronobiol Int 25:165–181PubMedGoogle Scholar
  44. 44.
    Haus E, Smolensky MH (2006) Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 17:489–500PubMedGoogle Scholar
  45. 45.
    Knutsson A (2003) Health disorders of shift workers. Occup Med 53:103–108Google Scholar
  46. 46.
    Morikawa Y, Nakagawa H, Miura K, Ishizaki M, Tabata M, Nishijo M, Higashiguchi K, Yoshita K, Sagara T, Kido T, Naruse Y, Nogawa K (1999) Relationship between shift work and onset of hypertension in a cohort of manual workers. Scand J Work Environ Health 25:100–104PubMedGoogle Scholar
  47. 47.
    Oishi M, Suwazono Y, Sakata K, Okubo Y, Harada H, Kobayashi E, Uetani M, Nogawa K (2005) A longitudinal study on the relationship between shift work and the progression of hypertension in Japanese male workers. J Hypertens 23:2173–2178PubMedGoogle Scholar
  48. 48.
    WHO-IARC (2010) Painting, firefighting, and shiftwork/IARC working group on the evaluation of carcinogenic risks to humans (2007: Lyon, France). v. 98Google Scholar
  49. 49.
    Lee RE, Smolensky MH, Leach CS, Mc Govern JP (1997) Circadian rhythms in the cutaneous reactivity to histamine and selected antigens, including phase relationship to urinary cortisol excretion. Ann Allergy 38:231–236Google Scholar
  50. 50.
    Smolensky MH, Lemmer B, Reinberg A (2007) The chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv Drug Deliv Rev 59:852–882PubMedGoogle Scholar
  51. 51.
    Gaultier C, Reinberg A, Girard F (1975) Circadian changes in lung resisatnce and dynamic compliance in healthy and asthmatic children. Effects of two bronchodilators. Respir Physiol 31:169–182Google Scholar
  52. 52.
    JNC 7 (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure, National Heart, Lung, and Blood Institute. JAMA 289:2560-2671Google Scholar
  53. 53.
    Drance SM (1960) The significance of the diurnal tension variations in normal and glaucomatous eyes. Arch Ophthalmol 64:494–501PubMedGoogle Scholar
  54. 54.
    Saccà SC, Rolando M, Marletta A, Macrí A, Cerqueti P, Ciurlo G (1998) Fluctuations of intraocular pressure during the day in open glaucoma, normal-tension glaucoma and normal subjects. Opthalmologica 212:115–119Google Scholar
  55. 55.
    Jarrett RJ (1972) Circadian variations in blood glucose levels, in glucose tolerance and in plasma immunoreactive insulin levels. Acta Diabetol Lat 9:263–275PubMedGoogle Scholar
  56. 56.
    Zimmet PZ, Wall JR, Rome R, Stimmler L, Jarrett RJ (1974) Diurnal variation in glucose tolerance: associated changes in plasma insulin, growth hormone and non-esterified fatty acids. Br Med J 1:485–488PubMedGoogle Scholar
  57. 57.
    Solberg HE (1987) Approved recommendation (1986) on the theory of reference values, Part 1. The concept of reference values. Report of Expert Panel on Theory of Reference Values (EPTRV) of the International Federation of Clinical Chemistry (IFCC). Clin Chim Acta 165:111–118PubMedGoogle Scholar
  58. 58.
    PetitClerc C, Solberg HE (1987) Approved recommendation on the theory of reference values, Part 2. Selection of individuals for the production of reference values. Report of Expert Panel on Theory of Reference Values (EPTRV) of the International Federation of Clinical Chemistry (IFCC). J Clin Chem Clin Biochem 25:639–644Google Scholar
  59. 59.
    Haus E, Touitou Y (1992) Chronobiology in laboratory medicine. In: Touitou Y, Haus E (eds) Biological rhythms in clinical and laboratory medicine. Heidelberg, Springer, pp 673–708Google Scholar
  60. 60.
    Halberg F, Lee JK, Nelson WL (1978) Time-qualified reference intervals – chronodesms. Experientia 34:713–716PubMedGoogle Scholar
  61. 61.
    Haus E (1987) Requirements for chronobiotechnology and chronobiologic engineering in laboratory medicine. In: Scheving LE, Halberg F, Ehret CF (eds) Chronobiotechnology and chronobiological engineering. Appl Sci 120:331–372Google Scholar
  62. 62.
    DePrins J, Hecquet B (1992) Data processing in chronobiological studies. In: Touitou Y Haus E(eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 90–113Google Scholar
  63. 63.
    Halberg F, Cornelissen G, Sothern RB, Wallach LA, Halberg E, Ahlgren A, Kuzel M, Radke A, Barbosa J, Goetz F, Buckley J, Mandel J, Schuman L, Haus E, Lakatua D, Sackett L, Berg H, Kawasaki T, Ueno M, Uezono K, Matsouka M, Omae T, Tarquini B, Cagnoni M, Garcia Sainz M, Perez Vega E, Griffiths K, Wilson D, Donati L, Tatti P, Vasta M, Locatelli I, Camagna A, Lauro R, Tritsch G, Wendt HW (1981) International geographic studies of oncological interest on chronobiological variables. In: Kaiser HN (ed) Neoplasms-comparative pathology of growth in animals, plants, and man. Wiley, New York, pp 553–596Google Scholar
  64. 64.
    Halberg F, Lagoguey A, Reinberg A (1983) Human circannual rhythms over a broad spectrum of physiological processes. Int J Chronobiol 8:225–268PubMedGoogle Scholar
  65. 65.
    Haus E, Lakatua DJ, Halberg F, Halberg E, Cornelissen G, Sackett LL, Berg HG, Kawasaki T, Ueno M, Uezono K, Matsouka M, Omae T (1980) Chronobiological studies of plasma prolactin in women and Kyuishu, Japan and Minnesota USA. J Clin Endocrinol Metabol 51:632–640Google Scholar
  66. 66.
    Haus E, Lakatua DJ, Sackett-Lundeen L, Swoyer J (1984) Chronobiology in laboratory medicine. In: Reitveld WT (ed) Clinical aspects of chronobiology. Baarn, Bakker, pp 13–82Google Scholar
  67. 67.
    Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L (1983) Chronobiology in hematology and immunology. Am J Anatomy 168:467–517Google Scholar
  68. 68.
    Haus E, Nicolau GY, Lakatua DJ, Sackett-Lundeen L (1988) Reference values for chronopharmacology. Annu Rev Chronopharmacol 4:333–424Google Scholar
  69. 69.
    Kanabrocki EL, Sothern RB, Scheving LE, Vesely DL, Tsai TH, Shelstad J, Cournoyer C, Greco J, Mermall H, Ferlin H, Nemchausky BM, Bushnell DL, Kaplan E, Kahn S, Augustine G, Holmes E, Rumbyrt J, Sturtevant RP, Sturtevant F, Bremer F, Third JLHG, McCormick JB, Mudd CA, Dawson S, Sackett-Lundeen L, Haus E, Halberg F, Pauly JE, Olwin JH (1990) Reference values for circadian rhythms of 98 variables in clinically healthy men in the fifth decade of life. Chronobiol Int 7:445–461PubMedGoogle Scholar
  70. 70.
    Kanabrocki EL, Sothern RB, Scheving LE, Vesely DL, Tsai TH, Shelstad J, Cournoyer C, Greco J, Mermall H, Nemchausky BM, Bushnell DL, Kaplan E, Kahn S, Augustine G, Holmes E, Rumbyrt J, Sturtevant RP, Sturtevant F, Bremer F, Third JLHG, McCormick JB, Mudd CA, Dawson S, Olwin JH, Sackett-Lundeen L, Haus E, Halberg F, Pauly JE, Hrushesky WJM (1990) Circadian reference data for men in fifth decade of life. In: Hayes, DK, Pauly, JE, Reiter, RE (eds) Chronobiology: its role in clinical medicine, general biology and agriculture. Prog Clin Biol Res, Wiley/Liss, New York, 341A:771–781Google Scholar
  71. 71.
    Touitou Y, Fèvre M, Lagoguey M, Carayon A, Bogdan A, Reinberg A, Beck H, Cesselin F, Touitou C (1981) Age- and mental health-related circadian rhythms of plasma levels of melatonin, prolactin, luteinizing hormone and follicle-stimulating hormone in man. J Endocrinol 91:467–475PubMedGoogle Scholar
  72. 72.
    Touitou Y, Motohashi Y, Pati A, Lévi F, Reinberg A, Ferment O (1986) Comparison of cortical circadian rhythms documented in samples of saliva, capillary (fingertips) and venous blood from healthy subjects. Annu Rev Chronopharmacol 3:297–299Google Scholar
  73. 73.
    Touitou Y, Sulon J, Bogdan A, Touitou C, Reinberg A, Beck H, Sodoyez JC, Demey-Ponsart E, Van Cauwenberge H (1982) Adrenal circadian system in young and elderly human subjects: a comparative study. J Endocrinol 93:201–210PubMedGoogle Scholar
  74. 74.
    Touitou Y, Touitou C, Bogdan A, Reinberg A, Auzeby A, Beck H, Guillet PH (1986) Differences between young and elderly subjects in seasonal and circadian variations of total plasma proteins and blood volume as reflected by hemoglobin, hematocrit and erythrocyte counts. Clin Chem 32:801–804PubMedGoogle Scholar
  75. 75.
    Touitou Y, Touitou C, Bogdan A, Reinberg A, Motohashi Y, Auzeby A, Beck H (1989) Circadian and seasonal variations of electrolytes in aging humans. Clin Chil Acta 180:245–254Google Scholar
  76. 76.
    Reinberg A, Lagoguey M, Cesselin F, Touitou Y, Legrand JC, Delassalle A, Antreassian J, Lagoguey A (1978) Circadian and circannual rhythms in plasma hormones and other variables in five healthy young human males. Acta Endocrinol 88:417–427PubMedGoogle Scholar
  77. 77.
    Hanson EJ (1970) Multiple time series. Wiley, New YorkGoogle Scholar
  78. 78.
    MacNeill IB (1974) Tests for periodic components in multiple time series. Biometrika 61:57–70Google Scholar
  79. 79.
    Van Cauter E (1979) Method for characterization of 24-hr temporal variations of blood components. Am J Physiol 237:E255–E264PubMedGoogle Scholar
  80. 80.
    DePrins J, Cornelissen G, Malberg W (1986) Statistical procedures in chronobiology and chronotherapeutics. Annu Rev Chronopharmacol 2:27–141Google Scholar
  81. 81.
    Halberg F, Panofsky H (1961) I. Thermo-variance spectra; method and clinical illustrations. Exp Med Surg 19:284–309PubMedGoogle Scholar
  82. 82.
    Panofsky H, Halberg F (1961) II. Thermo-variance spectra; simplified computational example and other methodology. Exp Med Surg 19:323–338PubMedGoogle Scholar
  83. 83.
    Halberg F, Engeli M, Hamburger C, Hillman D (1965) Spectral resolution of low-frequency, small amplitude rhythms in excreted ketosteroids; probable androgen-induced circaseptan desynchronization. Acta Endocrinol 103(Suppl):5–54Google Scholar
  84. 84.
    Nelson WL, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6:305–323PubMedGoogle Scholar
  85. 85.
    Halberg F, Tong YL, Johnson EA (1967) Circadian system phase – an aspect of temporal morphology; procedures and illustrative examples. In: von Mayersbach H (ed) The cellular aspects of biorhythms. Heidelberg, Springer, pp 20–48Google Scholar
  86. 86.
    Bingham C, Arbogast B, Cornelissen-Guillaume G, Lee JK, Halberg F (1982) Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9:397–439PubMedGoogle Scholar
  87. 87.
    Arendt J (1995) Melatonin and the mammalian pineal gland. Chapman Hill, LondonGoogle Scholar
  88. 88.
    Mirick DK, Davis S (2008) Melatonin as a biomarker of circadian dysregulation (review). Cancer Epidemiol Biomarkers Prev 17:3306–3313PubMedGoogle Scholar
  89. 89.
    Touitou Y, Motohashi Y, Reinberg A, Touitou C, Bourdeleau P, Bogdan A, Auzéby A (1990) Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol, and testosterone. Eur J Appl Physiol Occup Physiol 60:288–292PubMedGoogle Scholar
  90. 90.
    Schernhammer ES, Hankinson SE (2009) Urinary melatonin levels and postmenopausal breast cancer risk in the Nurses’ Health Study cohort. Cancer Epidemiol Biomarkers Prev 18:74–79PubMedGoogle Scholar
  91. 91.
    Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE (2004) Epidemiology of urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol Biomarkers Prev 13:936–943PubMedGoogle Scholar
  92. 92.
    Arendt J (1992) The pineal. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 348–362Google Scholar
  93. 93.
    Walker RF, Read GF, Wilson DW, Riad-Fahmy D, Griffiths K (1990) Chronobiology in laboratory medicine: principles and clinical applications illustrated from measurements of neutral steroids in saliva. In: Hayes DK, Pauly JE, Reiter RE (eds) Chronobiology: its role in clinical medicine, general biology and agriculture. Prog Clin Biol Res, Wiley/Liss, New York, 341A:105–117Google Scholar
  94. 94.
    Miles A, Philbrick DRS, Thomas DR, Grey J (1987) Diagnostic and clinical implications of plasma and salivary melatonin assay. Clin Chem 33:1295–1297PubMedGoogle Scholar
  95. 95.
    Archer SN, Viola AU, Kyriakopoulou V, von Schantz M, Dijk DJ (2008) Inter-individual differences in habitual sleep timing and entrained phase of endogenous circadian rhythms of BMAL1, PER2 and PER3 mRNA in human leukocytes. Sleep 31:608–617PubMedGoogle Scholar
  96. 96.
    Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145PubMedGoogle Scholar
  97. 97.
    Hida A, Kusanagi H, Satoh K, Kato T, Matsumoto Y, Echizenya M, Shimizu T, Higuchi S, Mishima K (2009) Expression profiles of PERIOD 1, 2 and 3 in peripheral blood mononuclear cells from older subjects. Life Sci 84:33–37PubMedGoogle Scholar
  98. 98.
    Takimoto M, Hamada A, Tomoda A, Ohdo S, Omura T, Sakato H, Kawatani J, Jodoi T, Nakagawa H, Terazono H, Koyanagi S, Higuchi S, Kimura M, Tukikawa H, Irie S, Saito H, Miike T (2005) Daily expression of clock genes in whole blood cells in healthy subjects and a patient with circadian rhythm sleep disorder. Am J Physiol Regul Integr Comp Physiol 289:1273–1279Google Scholar
  99. 99.
    Teboul M, Barrat-Petit MA, Li XM, Claustrat B, Formento JL, Delaunay F, Lévi F, Milano G (2005) Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J Mol Med 83:693–699PubMedGoogle Scholar
  100. 100.
    Azama T, Yano M, Oishi K, Kadota K, Hyun K, Tokura H, Nishimura S, Matsunaga T, Iwanaga H, Miki H, Okada K, Hiraoka N, Miyata H, Takiguchi S, Fujiwara Y, Yasuda T, Ishida N, Monden M (2007) Altered expression profiles of clock genes hPer1 and hPer2 in peripheral blood mononuclear cells of cancer patients undergoing surgery. Life Sci 80:1100–1108PubMedGoogle Scholar
  101. 101.
    Waterhouse J, Edwards B, Mugarza J, Flemming R, Minors D, Calbraith D, Williams G, Atkinson G, Reilly T (1999) Purification of masked temperature data from humans: some preliminary observations on a comparison of the use of an activity diary, wrist actimetry, and heart rate monitoring. Chronobiol Int 16:461–475PubMedGoogle Scholar
  102. 102.
    Waterhouse J, Weinert D, Minors D, Atkinson G, Reilly T, Folkard S, Owens D, Macdonald I, Sytnik N, Tucker P (1999) The effect of activity on the waking temperature rhythm in humans. Chronobiol Int 16:343–357PubMedGoogle Scholar
  103. 103.
    Reinberg A, Ghata J, Halberg F, Apelbaum M, Gervais P, Boudon P, Abulker C, Dupont J (1974) Treatment schedules modify circadian timing in human adrenocortical insufficiency. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin Ltd, Tokyo, pp 168–173Google Scholar
  104. 104.
    Angeli A (1974) Circadian ACTH-adrenal rhythm in man. Chronobiologia 1(Suppl):253–268PubMedGoogle Scholar
  105. 105.
    Grant PH, Forsham PH, DiRaimando VC (1965) Suppression of 17-hydroxycorticosteroids in plasma and urine after single and divided doses of triamcinolone. N Engl J Med 273:1115–1118PubMedGoogle Scholar
  106. 106.
    Harter JG, Reddy WJ, Thorn GW (1963) Studies on an intermittent corticosteroid dosage regimen. N Engl J Med 296:591–595Google Scholar
  107. 107.
    Alten R, Döring G, Cutolo M, Gromnica-Ihle E, Witte S, Straub R, Buttgereit F (2010) Hypothalamus-pituitary-adrenal axis function in patients with rheumatoid arthritis treated with nighttime-release prednisone. J Rheumatol 37:2025–2031PubMedGoogle Scholar
  108. 108.
    Buttgereit F, Döring G, Schaeffler A, Witte S, Sierakowski S, Gromnica-Ihle E, Jeka S, Krueger K, Szechinski J, Alten R (2008) Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): A double-blind randomised controlled trial. Lancet 371:205–214PubMedGoogle Scholar
  109. 109.
    To H, Irie S, Tomonari M, Watanabe Y, Kitahara T, Sasaki H (2009) Therapeutic index of methotrexate depends on circadian cycling of tumor necrosis factor-α in collagen-induced arthritis rats and mice. J Pharm Pharmacol 61:1333–1338PubMedGoogle Scholar
  110. 110.
    To H, Yoshimatsu H, Tomonari M, Ida H, Tsurumoto T, Tsuji Y, Sonemoto E, Shimasaki N, Koyanagi S, Sasaki H, Ieiri I, Higuchi S, Kawakami A, Ueki Y, Eguchi K (2011) Methotrexate chronotherapy is effective against rheumatoid arthritis. Chronobiol Int 28:267–274PubMedGoogle Scholar
  111. 111.
    Haus E, Cusulos M, Sackett-Lundeen L, Swoyer J (1990) Circadian variations in blood coagulation parameters, alpha-antitrypsin antigen and platelet aggregation and retention in clinically healthy subjects. Chronobiol Int 7:203–216PubMedGoogle Scholar
  112. 112.
    Haus E, Smolensky MH (1999) Biologic rhythms in the immune system. Chronobiol Int 16:581–622PubMedGoogle Scholar
  113. 113.
    Fernandes G (1992) Chronobiology of immune functions: cellular and humoral aspects. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Heidelberg, Springer, pp 493–503Google Scholar
  114. 114.
    Wrba H, Dutter A, Sánchez de la Peña S, Wu J, Carandente F, Cornélissen G, Halberg F (1990) Secular or circadian effects of placebo and melatonin on murine breast cancer? In: Hayes DK, Pauly JE, Reiter RE (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture. Wiley/Liss, Washington, pp 31–40Google Scholar
  115. 115.
    Wrba H, Halberg F, Dutter A (1986) Melatonin circadian-stage-dependently delays breast tumor development in mice injected daily for several months. Chronobiologia 13:123–128PubMedGoogle Scholar
  116. 116.
    Harris MD, Siegel LB, Alloway JA (1999) Gout and hyperuricemia. Am Fam Physician 59:925–934PubMedGoogle Scholar
  117. 117.
    Sydenham T (1850) The works of Thomas Sydenham. Translated from the Latin by R.G. LathanGoogle Scholar
  118. 118.
    Rigas B, Torosis J, McDougall CJ, Vener KJ, Spiro HM (1990) The circadian rhythm of biliary colic. J Clin Gastroenterol 12:409–414PubMedGoogle Scholar
  119. 119.
    Manfredini R, Gallerani K, Cecilia O, Boari B, Fersini C, Portaluppi F (2002) Circadian pattern in occurrence of renal colic in an emergency department; an analaysis of patients notes. BMJ 324:767PubMedGoogle Scholar
  120. 120.
    Bellamy N, Sothern RB, Campbell J (2004) Aspects of diurnal rhythmicity in pain, stiffness, and fatigue in patients with fibromyalgia. J Rheumatol 31:379–389PubMedGoogle Scholar
  121. 121.
    Yunus M, Masi AT, Calabro JJ, Miller KA, Feigenbaum SL (1981) Primary fibromyalgia: clinical study of 50 patients with matched controls. Semin Arthritis Rheum 11:151–171PubMedGoogle Scholar
  122. 122.
    Moore JG, Halberg F (1987) Circadian rhythm of gastric acid secretion in active duodenal ulcer: Chronobiological statistical characteristics and comparison of acid sectretory and plasma gastrin patterns with healthy subjects and post-vagotomy and pyloroplasty patients. Chronobiol Int 4:101–110PubMedGoogle Scholar
  123. 123.
    Cugini P, Di Palma L, Battisti P, Leone G, Materia E, Parenzi A, Romano M, Ferrera U, Moretti M (1990) Ultradian, circadian and infradian periodicity of some cardiovascular emergencies. Am J Cardiol 66:240–243PubMedGoogle Scholar
  124. 124.
    Kroetz C (1940) Ein biologiescher 24-Stunden-Rhythmus des Blutkreislaufs bei Gesundheit und bei Herzschwache zugleich ein Beitrag zur tageszeitlichen Haufung einiger akuter Kreislaufstorungen. Munch Med Wschr 87:314–317Google Scholar
  125. 125.
    Turner-Warwick M (1998) Epidemiology of nocturnal asthma. Am J Med 85:6–8Google Scholar
  126. 126.
    Dethlefsen U, Repges R (1985) Ein neues Therapieprinzip bei nachtlichem Asthma. Med Klin 80:44–47Google Scholar
  127. 127.
    Ebata T, Aizawa H, Kamide R, Niimura M (1999) The characteristics of nocturnal scratching in adults with atopic dermatitis. Br J Dermatol 141:82–86PubMedGoogle Scholar
  128. 128.
    Smolensky MH, Tatar SE, Bergman SA, Losman JG, Barnard CN, Dasco CC, Kraft IA (1976) Circadian rhythmic aspects of human cardiovascular function: A review by chronobiologic statistical methods. Chronobiologia 3:337–371PubMedGoogle Scholar
  129. 129.
    Portaluppi F, Hermida RC (2007) Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy. Adv Drug Deliv Rev 59:940–951PubMedGoogle Scholar
  130. 130.
    Tikkinen KA, Johnson TMn, Tammela TL, Sintonen H, Huhtala H, Auvinen A (2010) Nocturia frequency, bother, and quality of life: how much is too often? A population-based study in Finland. Eur Urol 57:488–496PubMedGoogle Scholar
  131. 131.
    Cruz IA, Drummond M, Wimck JC (2011) Obstructive sleep apnea symptoms beyond sleepiness and snoring: effects of nasal APAP therapy. Sleep Breath doi.10.1007/s11325-011-0502-4Google Scholar
  132. 132.
    Natarajan R (2010) Review of periodic limb movement and restless leg syndrome. J Postgrad Med 56:157–162PubMedGoogle Scholar
  133. 133.
    Portaluppi F, Cortelli P, Buonaura GC, Smolensky MH, Fabbain F (2009) Do restless legs syndrome and periodic limb movements of sleep play a role in nocturnal hypertension and increased cardiovascular disease risk in renal patients. Chronobiol Int 26:1206–1221PubMedGoogle Scholar
  134. 134.
    Kelmanson IA (1991) Circadian variation of the frequency of sudden infant death syndrome and of sudden death from life-threatening conditions in infants. Chronobiologia 18:181–186PubMedGoogle Scholar
  135. 135.
    Reinberg AE, Gervais P, Levi F, Smolensky M, Del Cerro L, Ugolini C (1988) Circadian and circannual rhythms of allergic rhinitis: an epidemiologic study involving chronobiologic methods. J Allergy Clin Immunol 81:51–62PubMedGoogle Scholar
  136. 136.
    Smolensky MH, Reinberg A, Labrecque G (1995) Twenty-four hour pattern in symptom intensity of viral and allergic rhinitis: Treatment implications. J Allergy Immunol 95:1084–1096Google Scholar
  137. 137.
    Bellamy N, Sothern RB, Campbell J, Buchanan WW (1991) Circadian rhythm in pain, stiffness, and manual dexterity in rheumatoid arthritis: relation between discomfort and disability. Ann Rhuem Dis 50:243–348Google Scholar
  138. 138.
    Fox AW, Davis RL (1998) Migraine chronobiology. Headache 38:436–441PubMedGoogle Scholar
  139. 139.
    Solomon GD (1992) Circadian rhythms and migraine. Cleveland Clin J Med 59:326–329Google Scholar
  140. 140.
    Mulcahy D, Keegan J, Cunningham D, Quyyumi A, Crean P, Park A, Wright C, Fox K (1998) Circadian variation of total ischemic burden and its alteration with anti-anginal agents. Lancet 2:755–759Google Scholar
  141. 141.
    Rocco MB, Barry J, Campbell S, Nabel E, Cook EF, Goldman L, Selwyn AP (1987) Circadian variation of transient myocardial ischemia in patients with coronary artery disease. Circulation 75:395–400PubMedGoogle Scholar
  142. 142.
    Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA (1997) Meta analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol 79:1512–1516PubMedGoogle Scholar
  143. 143.
    Shaw E, Tofler GH (2009) Circadian rhythm and cardiovascular disease. Curr Atheroscler Rep 11:289–295PubMedGoogle Scholar
  144. 144.
    Elliott WJ (1998) Circadian variation in the timing of stoke onset. A meta-analysis. Stroke 29:992–996PubMedGoogle Scholar
  145. 145.
    Gallerani M, Manfredini R, Fersini C (1993) Chronoepidemiology in human disease. Ann Inst Super Sanita 29:569–579Google Scholar
  146. 146.
    Gallerani M, Manfredini R, Ricci L, Grandi E, Cappato R, Calò G, Pareschi PL, Fersini C (1992) Sudden death from pulmonary thromboembolism: chronobiological aspects. Eur Heart J 6:305–323Google Scholar
  147. 147.
    Rossenwasser AM, Wirz-Justice A (1997) Circadian rhythms and depression: clinical and experimental models. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms, handbook of experimental pharmacology, vol 125. Springer, Berlin, pp 457–486Google Scholar
  148. 148.
    Wehr TA (1982) Circadian rhythm disturbances in depression and mania. In: Brown FM, Graeber RC (eds) Rhythmic aspects of behavior. Lawrence Erlbaum Ass, New Jersey, pp 399–428Google Scholar
  149. 149.
    Mooney M, Green C, Hatsukami D (2006) Nicotine self-administration: cigarette versus nicotine gum diurnal topography. Hum Psychopharamcol 21:539–548Google Scholar
  150. 150.
    Mützell S (1998) Alcohol consumption, clinical findings and retrospective psycho social data in a random sample of men in suburban Stockholm. Scand J Prim Health Care 6:185–192Google Scholar
  151. 151.
    Bellamy N, Sothern RB, Campbell J (1990) Rhythmic variations in pain perception in osteoarthritis of the knee. J Rheumatol 17:364–372PubMedGoogle Scholar
  152. 152.
    Bellamy N, Sothern RB, Campbell J, Buchanan WW (2002) Rhythmic variations in pain, stiffness, and manual dexterity in osteoarthristis. Ann Rheum Dis 61:1075–1080PubMedGoogle Scholar
  153. 153.
    Manfredini R, Gallerani M, Salmi R, Calò G, Pasin M, Bigoni M, Fersini C (1994) Circadian variation in the time of onset of acute intestinal bleeding. J Emerg Med 12:5–9PubMedGoogle Scholar
  154. 154.
    Svanes C, Sothern RB, Sorbye H (1998) Rhythmic patterns in incidence of peptic ulcer perforation over 5.5 decades in Norway. Chronobiol Int 15:241–264PubMedGoogle Scholar
  155. 155.
    Kim YK, Oh WH, Park KH, Kim JM, Kim DH (2010) Circadian blood pressure and intraocular pressure patterns in normal tension glaucoma patients with undisturbed sleep. Korean J Opththalmol 24:23–28Google Scholar
  156. 156.
    Liu JH, Bouligny RP, Kripke DF, Weinreb RN (2003) Nocturnal elevation of intraocular pressure is detectable in the sitting position. Invest Opththalmol Vis Sci 44(10):4439–4442Google Scholar
  157. 157.
    Baxil CW, Walczak TS (1997) Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia 38:56–62Google Scholar
  158. 158.
    Langdon-Down M, Brain WR (1929) Time of day in relation to convulsion in epilepsy. Lancet 1:1029–1032Google Scholar
  159. 159.
    Bjorvatn B, Pallesen S (2009) A practical approach to circadian rhythm sleep disorders. Sleep Med Rev 13:47–60PubMedGoogle Scholar
  160. 160.
    Pandi-Perumal SR, Trakht I, Spence DW, Srinivasan V, Dagan Y, Cardinali DP (2008) The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders. Nat Clin Pract Neurol 4:436–447PubMedGoogle Scholar
  161. 161.
    Lamont EW, James FO, Boivin DB, Cermakian N (2007) From circadian clock genes to pathologies. Sleep Med Rev 8:547–556Google Scholar
  162. 162.
    Aoki H, Ozeki Y, Yamada N (2001) Hypersensitivity of melatonin suppression in response to light in patients with delayed sleep phase syndrome. Chronobiol Int 18:263–271PubMedGoogle Scholar
  163. 163.
    Shanware NP, Hutchinson JA, Kim SH, Zhan L, Bowler MJ, Tibbetts RS (2011) Casein kinease1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability. J Biochem 286:12766–12774Google Scholar
  164. 164.
    Reinberg A, Ashkanazi I (2008) Internal desynchronization of circadian rhythms and tolerance to shift work. Chronobiol Int 25:625–643PubMedGoogle Scholar
  165. 165.
    Hack LM, Lockley SW, Arendt J, Skene DJ (2003) The effects of low-dose melatonin on the free-running rhythm of blind subjects. J Biol Rhythms 18:420–429PubMedGoogle Scholar
  166. 166.
    Kennaway DJ (2010) Clock genes at the heart of depression. J Pyschopharmacol 24:5–14Google Scholar
  167. 167.
    Kripke D, Drennan MD, Elliott JA (1992) The complex circadian pacemaker in affective disorder. In: Touitou Y Haus E (eds) Biologic rhythms in clinic and laboratory medicine. Springer, Heidelberg, pp 265–276Google Scholar
  168. 168.
    Parry BL, Meliska CJ, Sorenson DL, Martínez LF, López AM, Elliott JA, Hauger RL (2011) Reduced phase-advance of plasma melatonin after bright morning light in the luteal, but not follicular, menstrual cycle phase in premenstrual dysphoric disorder: an extended study. Chronobiol Int 28:415–424PubMedGoogle Scholar
  169. 169.
    Utge SJ, Soronen P, Loukola A, Kronholm E, Ollilia HM, Pirkola S, Porkka-Heiskanen T, Partonen T, Paunio T (2010) Systemic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLos One 5:e9259PubMedGoogle Scholar
  170. 170.
    Reinberg AE (1991) Concepts of circadian chronopharmacology. In: Hrushesky WJM, Langer R, Theeuwes F (eds) Temporal control of drug delivery. Ann N Y Acad Sci 618:102–115Google Scholar
  171. 171.
    Lemmer B (ed) (1989) Chronopharmacology: cellular and biochemical interactions. Marcel Dekker, New YorkGoogle Scholar
  172. 172.
    Lemmer B (2005) Chronopharmacology and controlled drug release. Expert Opin Drug Deliv 2:667–681PubMedGoogle Scholar
  173. 173.
    Redfern PH, Lemmer B (eds) (1997) Physiology and pharmacology of biological rhythms. Springer, HeidelbergGoogle Scholar
  174. 174.
    Bélanger PM (1993) Chronopharmacology in drug research and therapy. Adv Drug Res 24:1–80Google Scholar
  175. 175.
    Bélanger PM, Bruguerolle B, Labrecque G (1997) Rhythms in pharmacokinetics: absorption, distribution, metabolism, and excretion. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms: handbook of experimental pharmacology, vol 125. Springer, Berlin, pp 177–204Google Scholar
  176. 176.
    Bruguerolle B (1998) Chronopharmacokinetics. Current status. Clin Pharmacokinet 35:83–94PubMedGoogle Scholar
  177. 177.
    Lemmer B (2006) Clinical chronopharmacology of the cardiovascular system: hypertension and coronary heart disease. Clin Ther 157:41–52Google Scholar
  178. 178.
    Lemmer B, Bruguerolle B (1994) Chronopharmacokinetics. Are they clinically relevant? Clin Pharmacokinet 26:419–427PubMedGoogle Scholar
  179. 179.
    Moore J, Merki H (1997) Gastrointestinal tract. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms, handbook of experimental pharmacology, vol 125. Berlin, Springer, pp 351–373Google Scholar
  180. 180.
    Reinberg AE, Smolensky MH (1982) Circadian changes in drug disposition in man. Clin Pharmacokinet 7:401–420PubMedGoogle Scholar
  181. 181.
    Witte K, Lemmer B (1997) Rhythms in second message mechanism. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms, handbook of experimental pharmacology, vol 125. Berlin, Springer, pp 135–156Google Scholar
  182. 182.
    Sanders SW, Moore JG, Buchi KN, Bishop AL (1988) Circadian variation in the pharmacodynamic effect of intrvenous ranitidine. Annu Rev Chronopharmacol 5:335–338Google Scholar
  183. 183.
    Sanders SW, Moore JG, Buchi KN, Bishop AL (1989) Pharmacodynamics of intravenous ranitidine after bolus and continuous infusion in patients with healed duodenal ulcer. Clin Pharmacol Ther 46:545–551PubMedGoogle Scholar
  184. 184.
    White C, Smolensky MH, Sanders SW, Buchi KN, Moore JG (1991) Day-night and individual differences in response to constant-rate ranitidine infusion. Chronobiol Int 8:56–66PubMedGoogle Scholar
  185. 185.
    Decousus H (1992) Chronobiology in hemostasis. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 554–565Google Scholar
  186. 186.
    Decousus H, Croze M, Lévi F, Perpoint B, Jaubert J, Bonadona JF, Reinberg A, Queneau P (1985) Circadian changes in anticoagulant effect of heparin infused at a constant rate. Br Med J 290:341–344Google Scholar
  187. 187.
    Haus E (2007) Chronobiology of hemostasis and inferences for the chronotherapy of coagulation disorders and thrombosis prevention. Adv Drug Deliv Rev 59:966–984PubMedGoogle Scholar
  188. 188.
    Bruguerolle B, Labrecque G (2007) Rhythm patterns in pain and their chronotherapy. Adv Drug Deliv Rev 59:883–895PubMedGoogle Scholar
  189. 189.
    Smolensky MH, Hermida R, Ayala DE, Portaluppi F (2010) Administration-time-dependent effects of antihypertension medications: basis for the chronotherapy of hypertension (review). Blood Press Monitor 15:173–180Google Scholar
  190. 190.
    Portaluppi F, Smolensky MH (2010) Perspectives on the chronotherapy of hypertension based on the results of the MAPEC study. Chronobiol Int 27:1652–1667PubMedGoogle Scholar
  191. 191.
    Hermida RC, Ayala DE, Mojón A, Fernández JR (2010) Influence of circadian time of hypertension treatment on cardiovascular risk: Results of the MAPEC study. Chronobiol Int 27:1629–1651PubMedGoogle Scholar
  192. 192.
    Hermida RC, Ayala DE, Fontao MJ, Mojón A, Fernández JR (2010) Chronotherapy with valsartan/amlodipine fixed combination: improved blood pressure control of essential hypertension with bedtime dosing. Chronobiol Int 27:1287–1303PubMedGoogle Scholar
  193. 193.
    Os I, Bratland B, Dahlhöf B, Syvertsen JO, Tretli S (1994) Female preponderance for lisinopril cough in hypertension. Am J Hypertens 7:1012–1015PubMedGoogle Scholar
  194. 194.
    Oparil S, Miller AP (2005) Gender and hypertension. J Clin Hypertens 7:305–309Google Scholar
  195. 195.
    Kloner RA, Sowers JR, DiBona GF, Gaffney M, Wein M (1996) Sex- and age-related antihypertensive effects of amlodipine. The Amlodipine Cardiovascular Community Trial Study Group. Am J Cardiol 77:713–722PubMedGoogle Scholar
  196. 196.
    Canzanello VJ, Baranco-Pryor E, Rahbari-Oskoui F, Schwartz GL, Boerwinkle E, Turner ST, Chapman AB (2008) Predictors of blood pressure response to the angiotensin receptor blocker candesartan in essential hypertension. Am J Hypertens 21:61–66PubMedGoogle Scholar
  197. 197.
    Saunders E, Cable G, Neutel J (2008) Predictors of blood pressure response to angiotensin receptor blocker/diuretic combination therapy: a secondary analysis of the irbesartan/hydrochlorothiazide blood pressure reductions in diverse populations (INCLUSIVE) study. J Clin Hypertens 10:27–33Google Scholar
  198. 198.
    Ayala DE, Hermida RC (2010) Sex differences in the administration-time-dependent effects of low-dose aspirin on ambulatory blood pressure in hypertensive subjects. Chronobiol Int 27:354–362Google Scholar
  199. 199.
    Hermida RC, Calvo C, Ayala DE, Domínquez MJ, Covelo M, Fernández JR, Mojón A, López JE (2003) Administration time-dependent effects of valsartan on ambulatory blood pressure of hypertensive subjects. Hypertension 42:283–290PubMedGoogle Scholar
  200. 200.
    Cambar J, L’Azou B, Cal C (1992) Chronotoxicology. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 139–150Google Scholar
  201. 201.
    Cambar J, Pons M (1997) New trends in chronotoxicology. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms, handbook of experimental pharmacology, vol 125. Springer, Berlin, pp 557–588Google Scholar
  202. 202.
    Halberg F (1960) Temporal coordination of physiologic function. Cold Spring Harbor Symp Quant Biol 25:289–310PubMedGoogle Scholar
  203. 203.
    Beauchamp D, Labrecque G (2007) Chronobiology and chronotoxicology of antibiotics and aminoglycosides. Adv Drug Deliv Rev 59:896–903PubMedGoogle Scholar
  204. 204.
    Ceresa F, Angeli A, Buccuzzi G, Molino G (1969) Once-a-day neurally stimulated and basal ACTH secretion phases in man and their response to corticoid inhibition. J Clin Endocrinol 29:1074–1082Google Scholar
  205. 205.
    Haus E (2007) Chronobiology in the endocrine system. Adv Drug Deliv Rev 59:985–1014PubMedGoogle Scholar
  206. 206.
    McHugh RB, Smolensky MH, Halberg F (1975) Biological rhythm experimentation: a longitudinal design and analysis. Chronobiologia 2:1–12PubMedGoogle Scholar
  207. 207.
    Smolensky MH, Reinberg A (1976) The chronotherapy of corticosteroids: a practical application of chronobiological findings to clinical and hospital nursing. J Nursing Clinics 11:609–620Google Scholar
  208. 208.
    Hermida RC, Ayala DC, Mojón A, Fernández JR (2008) Chronotherapy with nifedipin GITS in hypertensive patients: improved efficacy and safety with bedtime dosing. Am J Hypertens 21:948–954PubMedGoogle Scholar
  209. 209.
    Bernard S, Cajavec Bernard B, Lévi F, Herzel H (2010) Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. PLOS Comput Biol 6(3):e1000712PubMedGoogle Scholar
  210. 210.
    Hrushesky WJM, März WJ (1992) Chronochemotherapy of malignant tumors: Temporal aspects of antineoplastic drug toxicity. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 611–634Google Scholar
  211. 211.
    Lévi F (1997) Chronopharmacology of anticancer agents. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms, handbook of experimental pharmacology, vol 125. Springer, Berlin, pp 299–350Google Scholar
  212. 212.
    Lévi F, Focan C, Karaboué A, de la Valette V, Focan-Henrard D, Baron B, Kreutz F, Giacchetti S (2007) Implications of circadian clocks for the rhythmic delivery of cancer medications. Adv Drug Deliv Rev 59:1015–1035PubMedGoogle Scholar
  213. 213.
    Mormont C, Boughattas N, Lévi F (1989) Mechanisms of circadian rhythms in the toxicity and efficacy of anticancer drugs: relevance for the development of new analogues In: Lemmer B (ed) Chronopharmacology: cellular and biochemical interactions. Marcel Dekker Inc, New York, pp 395–437Google Scholar
  214. 214.
    Sauerbier I (1992) Rhythms in drug-induced teratogensis. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Heidelberg, Springer, pp 151–157Google Scholar
  215. 215.
    Smolensky MH (1998) Knowledge and attitudes of American physicians and public about medical chronobiology and chronotherapeutics. Findings of two 1996 Gallup surveys. Chronobiol Int 15:377–394PubMedGoogle Scholar
  216. 216.
    Arendt J, Aldhous M, Marks V (1986) Alleviation of jet-lag by melatonin: preliminary results of a controlled double-blind trial. Br Med J 292:1170Google Scholar
  217. 217.
    D'Alonzo GE, Smolensky MH, Feldman S, Gianotti LA, Emerson MB, Staudinger H, Steinijans VM (1990) Twenty-four-h lung function in adult patients with asthma: chronoptimized theophylline therapy once-daily dosing in the evening versus conventional twice-daily dosing. Am Rev Respir Dis 142:84–90PubMedGoogle Scholar
  218. 218.
    Neuenkirchen H, Wilkens JH, Oellerich M, Sybrecht GW (1985) Nocturnal asthma: effect of a once per evening dose of sustained-release theophylline. Eur J Respir Dis 66:196–204PubMedGoogle Scholar
  219. 219.
    Merki HS, Witzel L, Hare K, Scheurle E, Bauerfeind P, Blum AL (1987) Single dose treatment with H2-receptor antagonists: Is bedtime too late? Gut 28:451–454PubMedGoogle Scholar
  220. 220.
    Stalenhoff AFH, Mol MJTM, Stuyt PMJ (1989) Efficacy and tolerability of simvastatin. Am J Med 87:39s–43sGoogle Scholar
  221. 221.
    Sica D, Frishman WH, Manowitz N (2003) Pharmacokinetics of propranolol after single and multiple dosing with sustained released propranolol or propranolol CR (Innopran XL™), a new chronotherapeutic formulation. Heart Dis 5:176–181PubMedGoogle Scholar
  222. 222.
    Sista S, Lai J, Eradiri O, Albert K (2003) Pharmacokinetics of a novel diltiazem HCL extended-release tablet formulation for evening administration. J Clin Pharmacol 43:1149–1157PubMedGoogle Scholar
  223. 223.
    Smith DHG, Neutel JM, Weber MA (2001) A new chronotherapeutic oral drug absorption system for verapamil optimizes blood pressure control in the morning. Am J Hypertens 14:14–19PubMedGoogle Scholar
  224. 224.
    Smolensky MH, Hermida R, Portaluppi F, Haus E, Reinberg A (2005) Chronotherapeutics in the treatment of hypertersion. In: Oparil S, Weber MA (eds) Hypertension: a companion to Brenner and Rector’s the kidney, 2nd edn. Philadelphia, Elsevier Saunders, pp 530–542Google Scholar
  225. 225.
    White WB, Anders RJ, MacInyre JM, Black HR, Sica DA (1995) Nocturnal dosing of a novel delivery system of verapamil for systemic hypertension. Am J Cardiol 76:375–380PubMedGoogle Scholar
  226. 226.
    Kunkel G, Steinijans VW, Borner K (1987) Chrono-optimization of the time of evening administration of theophylline with unequally divided twice daily dosing. Chronobiol Int 4:364–368Google Scholar
  227. 227.
    Postma DS, Koëter GH, vd Mark TW, Reig RP, Sluiter HJ (1985) The effects of oral slow-release terbutaline on the circadian variation in spirometry and arterial blood gas levels in patients with chronic air flow obstruction. Chest 87:653–657PubMedGoogle Scholar
  228. 228.
    Portaluppi F, Manfredini R, Fersini C (1999) From a static to a dynamic concept of risk: the circadian epidemiology of cardiovascular risk. Chronobiol Int 16:33–50PubMedGoogle Scholar
  229. 229.
    Black HR, Elliott WJ, Neaton JD, Grandits G, Grambsch P, Grimm RH, Hansson L, Lacoucière Y, Muller J, Sleight P, Weber MA, White WB, Williams G, Wittes J, Zanchetti A, Fakouhi TD (1998) Rationale and design for the Controlled ONset Verapamil INvestigation of Cardiovascular Endpoints (CONVINCE) trial. Control Clin Trials 19:370–390PubMedGoogle Scholar
  230. 230.
    Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB, Neaton JD, Grimm RH, Hansson L, Lacourciere Y, Muller J, Sleight P, Weber MA, Williams G, Wittes J, Zanchetti A, Anders RJ, Group CR (2003) Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA 289:2073–2082PubMedGoogle Scholar
  231. 231.
    Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, Neaton JD, Grimm RH, Hansson L, Lacourcière Y, Muller JE, Sleight P, Weber MA, White WB, Williams GH, Wittes J, Zanchett A, Anders RJ, Group CR (2005) Results of the Controlled ONset Verapamil INvestigation of Cardiovascular Endpoints (CONVINCE) trial by geographical region. J Hypertens 23:1099–1106PubMedGoogle Scholar
  232. 232.
    Hermida RC (2007) Ambulatory blood pressure monitoring in the prediction of cardiovascular events of chronotherapy: rationale and design of the MAPEC study. Chronobiol Int 24:749–775PubMedGoogle Scholar
  233. 233.
    Bennett BM, Leitman DC, Schroeder H, Kawamoto JH, Nakatsu K, Murad F (1989) Relationship between biotransformation of glyceryl trinitrate and cyclic GMP accumulation in various cultured cell lines. J Pharmacol Exp Therap 250:316–322Google Scholar
  234. 234.
    Fung H-L, Chung S-J, Bauer JA, Chong S, Kowaluk EA (1992) Biochemical mechanisms of organic nitrate action. Am J Cardiol 70:4B–10BPubMedGoogle Scholar
  235. 235.
    Salvemini D, Pistelli A, Vane J (1993) Conversion of glyceryl trinitrate to nitric oxide in tolerant and non-tolerant smooth muscle cells. Br J Pharmacol 108:162–169PubMedGoogle Scholar
  236. 236.
    Waldman SA, Rapoport RM, Ginsburg R, Murad F (1986) Densitization to nitroglycerin in vascular smooth muscle from rat and human. Biochem Pharmacol 35:3525–3531PubMedGoogle Scholar
  237. 237.
    Enbright GE (1914) The effects of nitroglycerin on those engaged in its manufacture. J Am Med Assoc 62:201–202Google Scholar
  238. 238.
    Stewart D (1888) Remarkable tolerance to nitroglycerin. Philadelphia Polyclinic 6:43Google Scholar
  239. 239.
    Chen Z, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci U S A 99:8306–8311PubMedGoogle Scholar
  240. 240.
    Katz RJ (1990) Mechanism of nitrate tolerance: a review. Cardiovasc Drugs Therapy 4:247–252Google Scholar
  241. 241.
    Hinz B, Schroeder H (1998) Nitrate tolerance is specific for nitric acid esters and its recovery requires intact protein synthesis. Biochem Biophys Res Commun 252:232–235PubMedGoogle Scholar
  242. 242.
    Kenkare S, Benet LZ (1996) Tolerance to nitroglycerin in rabbit aorta. Biochem Pharmacol 51:1357–1361PubMedGoogle Scholar
  243. 243.
    Thadhani U (1992) Role of nitrates in angina pectoris. Am J Cardiol 70:43B–53BGoogle Scholar
  244. 244.
    Kimura E, Hosoda S, Katoh K, Endo M, Yasue H, Asada S, Kuroiwa A (1978) Panel discussion on the variant form of angina pectoris. Jpn Circ J 42:455–476PubMedGoogle Scholar
  245. 245.
    Kuroiwa A (1978) Symptomology of variant angina. Jpn Circ J 42:459–478Google Scholar
  246. 246.
    Conn PM, Crowley WFJ (1994) Gonadotropin-releasing hormone and its analogs. Annu Rev Med 45:391–405PubMedGoogle Scholar
  247. 247.
    Huirne JA, Lambalk CB (2001) Gonadotropin releasing hormone receptor antagonists. Lancet 358:1793–1803PubMedGoogle Scholar
  248. 248.
    Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) Hypophysial response to continuous and intermittent delivery of hypopthalamic gonadotropin releasing hormone. Science 202:632–633Google Scholar
  249. 249.
    Knobil E (1980) The role of signal pattern in the hypothalamic control of gonadotropin secretion. In: Ortavant R, Reinberg A (eds) Rhythmes et reproduction. Paris, Masson, pp 75–80Google Scholar
  250. 250.
    Nakai Y, Plant TM, Hess DL, Keoch EJ, Knobil E (1978) On the sites of negative and positive feedback action of estradiol in the control of gonadotropin secretion in the Rhesus monkey. Endocrinology 102:1008–1014PubMedGoogle Scholar
  251. 251.
    Filicori M, Santoro N, Merriam GR, Crowley WFJ (1986) Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab 62:1136–1144PubMedGoogle Scholar
  252. 252.
    Reame N, Sauder SE, Kelch RP, Marshall JC (1984) Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J Clin Endocrinol Metab 59:328–337PubMedGoogle Scholar
  253. 253.
    Hall JE, Schoenfeld DA, Martin KA, Crowley WFJ (1992) Hypothalamic gonadotropin-releasing hormone secretion and follicle-stimulating hormone dynamics during the luteal-follicular transition. J Clin Endocrinol Metab 74:600–607PubMedGoogle Scholar
  254. 254.
    Knobil E (1980) The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 36:53–88PubMedGoogle Scholar
  255. 255.
    Crowley WFJ, Vale W, Rivier J, MacArthur JW (1981) LH and RH in hypogonadotropic hypogonadism. In: Zatuchini GI, Schelter JD, Sciarra JJ (eds) LH-RH peptides as female and male contraceptives. Philadelphia, Harper, pp 321–333Google Scholar
  256. 256.
    Santen RJ, Manni A, Harvey H (1986) Gonadotropin releasing hormone (GnRH) analogs for the treatment of breast and prostatic carcinoma. Breast Cancer Res Treat 7:129–145PubMedGoogle Scholar
  257. 257.
    Macklon NS, Stouffer RL, Giudice LC, Fauser BC (2006) The Science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev 27:170–207PubMedGoogle Scholar
  258. 258.
    Gompel A, Poitout P (1997) Inducteurs de l’ovulation. In: Maurais-Jarvis P, Schaison P, Touraine P (eds) Médecine de la reproduction. Paris, Flammarion, pp 604–616Google Scholar
  259. 259.
    Gompel A (2003) Induction de l’ovulation par administration pulsatile de Gn-RH par pompe portable. In: Reinberg AE (ed) Chronobiologie Médicale et Chronothérapeutique. Paris, Flammarion, pp 177–180Google Scholar
  260. 260.
    Leyendecker G, Wildt L, Hansmann M (1980) Pregnancies following chronic intermittent (pulsatile) administration of Gn-Rh by means of a portable pump (“Zyklomat”) – a new approach to the treatment of infertility in hypothalamic amenorrhea. J Clin Endocrinol Metab 51:1214–1216PubMedGoogle Scholar
  261. 261.
    Hayes FJ, Seminara SB, Crowley WF Jr (1998) Hypogonadotropic hypogonadism. Endocrinol Metab Clin N Am 27:739–763Google Scholar
  262. 262.
    Santoro N, Filicori M, Crowley WF Jr (1986) Hypogonadotropic disorders in men and women: diagnosis and therapy with pulsatile gonadotropin-releasing hormone. Endocr Rev 7:11–23PubMedGoogle Scholar
  263. 263.
    Spratt DI, Crowley WF Jr, Butler JP, Hoffman AR, Conn PM, Badger TM (1985) Pituitary luteinizing hormone responses to intravenous and subcutaneous administration of gonadotropin-releasing hormone in men. JCE & M 61:890–895Google Scholar
  264. 264.
    Farhy LS, Veldhuis JD (2005) Deterministic construct of amplifying actions of ghrelin on pulsatile growth hormone secretion. Am J Physiol Regul Integr Comp Physiol 288:R1649–R1663PubMedGoogle Scholar
  265. 265.
    Giustina A, Veldhuis JD (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797PubMedGoogle Scholar
  266. 266.
    Veldhuis JD, Bowers CY (2003) Three-peptide control of pulsatile and entropic feedback-sensitive modes of growth hormone secretion: modulation by estrogen and aromatizable androgen (review). J Pediatr Endocrinol Metab 16(Suppl 3):587–605PubMedGoogle Scholar
  267. 267.
    Veldhuis JD, Roelfsema F, Keenan DM, Pincus S (2011) Gender, age, body mass index, and IGF-1 individually and jointly determine distinct GH dynamics: analyses in one hundred healthy adults. J Clin Endocrinol Metab 96:115–121PubMedGoogle Scholar
  268. 268.
    Isgaard J, Carlsson L, Isaksson O, Jansson J (1988) Pulsatile intravenous growth hormone (GH) infusion to hypophysectomized rats increases insulin-like growth factor I messenger ribonucleic acid in skeletal tissues more effectively than continuous GH infusion. Endocrinology 123:2605–2610PubMedGoogle Scholar
  269. 269.
    Jaffe CA, Turgeon DK, Lown K, Demott-Friberg R, Watkins PB (2002) Growth hormone secretion pattern is an independent regulator of growth hormone actions in humans. Am J Physiol Endocrinol Metab 283:E1008–E1015PubMedGoogle Scholar
  270. 270.
    Veldhuis JD, Bowers CY (2010) Integrating GHS into the ghrelin system (Review). Int J Peptides 2010:879503Google Scholar
  271. 271.
    Veldhuis JD, Roemmich JN, Richmond EJ, Bowers CY (2006) Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr Rev 27:101–140PubMedGoogle Scholar
  272. 272.
    Litman T, Halberg F, Ellis S, Bittner JJ (1958) Pituitary growth hormone and mitoses in immature mouse liver. Endocrinology 62:361–364PubMedGoogle Scholar
  273. 273.
    Veldhuis JD, Keenan DM, Pincus SM (2008) Motivations and methods for analyzing pulsatile hormone secretion (review). Endocr Rev 29:823–864PubMedGoogle Scholar
  274. 274.
    Wu FC, Butler GE, Kelnar CJ, Huhtaniemi I, Veldhuis JD (1996) Ontogeny of pulsatile gonadotropin releasing hormone secretion from midchildhood, through puberty, to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. J Clin Endocrinol Metab 81:1798–1805PubMedGoogle Scholar
  275. 275.
    Farhy LS, Veldhuis JD (2004) Putative GH pulse renewal: periventricular somatostatinergic control of an arcuate-nuclear somatostatin and GH-releasing hormone oscillator. Am J Physiol Regul Integr Comp Physiol 286:R1030–R1042PubMedGoogle Scholar
  276. 276.
    Farhy LS, Straume M, Johnson ML, Kovatchev B, Veldhuis JD (2002) Unequal autonegative feedback by GH models the sexual dimorphism in GH secretory dynamics. Am J Physiol Regul Integr Comp Physiol 282:R753–R764PubMedGoogle Scholar
  277. 277.
    Veldhuis JD, Evans WS, Shah N, Story S, Bray MJ, Anderson SM (1999) Proposed mechanisms of sex-steroid hormone neuromodulation of the human GH-IGP-I axis. In: Veldhuis JD, Giustina A (eds) Sex-steroid interactions with growth hormone. Springer, New York, pp 93–121Google Scholar
  278. 278.
    Arvat E, Ceda GP, Di Vito L, Ramunni J, Gianotti L, Broglio F, Deghenghi R, Ghigo E (1998) Age-related variations in the neuroendocrine control, more than impaired receptor sensitivity, cause the reduction in the GH-releasing activity of GHRPs in human aging. Pituitary 1:51–58PubMedGoogle Scholar
  279. 279.
    Van Cauter E, Plat L, Copinschi G (1998) Interrelations between sleep and the somatotropic axis. Sleep 21:553–566PubMedGoogle Scholar
  280. 280.
    Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO (1987) Effects of sex and age on the 24-h profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 64:51–58PubMedGoogle Scholar
  281. 281.
    Holl RW, Hartman ML, Veldhuis JD, Taylor WM, Thorner MO (1991) Thirty-second sampling of plasma growth hormone in man: correlation with sleep stages. J Clin Endocrinol Metab 72:854–861PubMedGoogle Scholar
  282. 282.
    Krueger JM, Obál F Jr (1993) Growth hormone-releasing hormone and interleukin-1 in sleep regulation. FASEB J 7:645–652PubMedGoogle Scholar
  283. 283.
    Ocampo-Lim B, Guo W, DeMott-Friberg R, Barkan AL, Jaffe CA (1996) Nocturnal growth hormone (GH) secretion is eliminated by infusion of GH-releasing hormone antagonist. J Clin Endocrinol Metab 81:4396–4399PubMedGoogle Scholar
  284. 284.
    Gronfier C, Luthringer R, Follenius M, Schaltenbrand N, Macher JP, Muzet A, Brandenberger G (1996) A quantitative evaluation of the relationships between growth hormone secretion and delta wave electroencephalographic activity during normal sleep and after enrichment in delta waves. Sleep 19:817–824PubMedGoogle Scholar
  285. 285.
    Van Cauter E, Plat L, Scharf MB, Leproult R, Cespedes S, L’Hermite-Balériaux M, Copinschi G (1997) Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young men. J Clin Invest 100:745–753PubMedGoogle Scholar
  286. 286.
    Anderson LA, McTernan PG, Barnett AH, Kumar S (2001) The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: influence of gender and site. J Clin Endocrinol Metab 86:5045–5051PubMedGoogle Scholar
  287. 287.
    Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721PubMedGoogle Scholar
  288. 288.
    Davey HW, Wilkins RJ, Waxman DJ (1999) STAT5 signaling in sexually dimorphic gene expression and growth patterns. Am J Hum Genet 65:959–965PubMedGoogle Scholar
  289. 289.
    Rudling M, Norstedt G, Olivecrona H, Reihner E, Gustafsson JA, Angelin B (1992) Importance of growth hormone for the induction of hepatic low density lipoprotein receptors. Proc Natl Acad Sci U S A 89:6983–6987PubMedGoogle Scholar
  290. 290.
    Laron Z (2004) Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J Clin Endocrinol Metab 89:1031–1044PubMedGoogle Scholar
  291. 291.
    Roelfsema F, Biermasz NR, Veldman RG, Veldhuis JD, Frölich M, Stokvis-Brantsma WH, Wit JM (2000) Growth hormone (GH) secretion in patients with an inactivating defect of the GH-releasing hormone (GHRH) receptor is pulsatile: evidence for a role for non-GHRH inputs into the generation of GH pulses. J Clin Endocrinol Metab 86:2459–2464Google Scholar
  292. 292.
    van Coevorden A, Mockel J, Laurent E, Kerkhofs M, L’Hermite-Balériaux M, Decoster C, Nève P, Van Cauter E (1991) Neuroendocrine rhythms and sleep in aging men. Am J Physiol 260(4 Pt 1):E651–E661PubMedGoogle Scholar
  293. 293.
    Veldhuis JD, Liem AY, South S, Weltman A, Weltman J, Clemmons DA, Abbott R, Mulligan T, Johnson ML, Pincus S, Straume M, Iranmanesh A (1995) Differential impact of age, sex steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay. J Clin Endocrinol Metab 80:3209–3222PubMedGoogle Scholar
  294. 294.
    Martin FC, Yeo AL, Sonksen PH (1997) Growth hormone secretion in the elderly: aging and the somatopause. Baillieres Clin Endocrinol Metab 11:223–250PubMedGoogle Scholar
  295. 295.
    Biermasz NR, Pereira AM, Frölich M, Romijn JA, Veldhuis JD, Roelfsema F (2004) Octreotide represses secretory-burst mass and nonpulsatile secretion but does not restore event frequency or orderly GH secretion in acromegaly. J Clin Endocrinol Metab 286:E25–E30Google Scholar
  296. 296.
    Hartman ML, Pincus SM, Johnson ML, Matthews DH, Faunt LM, Vance ML, Thorner MO, Veldhuis JD (1994) Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release. J Clin Invest 95:1277–1288Google Scholar
  297. 297.
    Faje AT, Barkan AL (2010) Basal, but not pulsatile, growth hormone secretion determines the ambient circulating levels of insulin-like growth factor-1. J Clin Endocrinol Metab 95:2486–2491PubMedGoogle Scholar
  298. 298.
    Dimaraki EV, Jaffe CA, DeMott-Friberg R, Chandler WF, Barkan AL (2002) Acromegaly with apparently normal GH secretion: implications for diagnosis and follow-up. J Clin Endocrinol Metab 87:3537–3542PubMedGoogle Scholar
  299. 299.
    van den Berg G, Pincus SM, Frölich M, Veldhuis JD, Roelfsema F (1998) Reduced disorderliness of growth hormone release in biochemically inactive acromegaly after pituitary surgery. Eur J Endocrinol 138:164–169PubMedGoogle Scholar
  300. 300.
    Cordido F, Garcia-Buela J, Sangiao-Alvarellos S, Martinez T, Vidal O (2010) The decreased growth hormone response to growth hormone releasing hormone in obesity is associated to cardiometabolic risk factors. Mediators Inflamm 2010:1–8Google Scholar
  301. 301.
    Utz AL, Yamamoto A, Hemphill L, Miller KK (2008) Growth hormone deficiency by growth hormone releasing hormone-arginine testing criteria predicts increased cardiovascular risk markers in normal young overweight and obese women. J Clin Endocrinol Metab 93:2507–2514PubMedGoogle Scholar
  302. 302.
    Sen F, Demirturk M, Abaci N, Golcuk E, Oflaz H, Elitok A, Kutluturk F, Issever H, Unaltuna NE, Ozbey NC (2008) Endothelial nitric oxide synthase intron 4a/b polymorphism and early atherosclerotic changes in hypopituitary GH-deficient adult patients. Eur J Endocrinol 158:615–622PubMedGoogle Scholar
  303. 303.
    Hong JW, Kim JY, Kim YE, Lee EJ (2011) Metabolic parameters and nonalcoholic fatty liver disease in hypopituitary men. Horm Metab Res 43:48–54PubMedGoogle Scholar
  304. 304.
    Barclay JL, Nelson CN, Ishikawa M, Murray LA, Kerr LM, McPhee TR, Powell EE, Waters MJ (2011) GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 152:181–192PubMedGoogle Scholar
  305. 305.
    Christ ER, Cummings MH, Russell-Jones DL (1998) Dyslipidaemia in adult growth hormone (GH) deficiency and the effect of GH replacement therapy: a review. Trends Endocrinol Metab 9:200–206PubMedGoogle Scholar
  306. 306.
    Monson JP, Jönsson P, Koltowska-Häggström M, Kourides I (2007) Growth hormone (GH) replacement decreases serum total and LDL-cholesterol in hypopituitary patients on maintenance HMG CoA reductase inhibitor (statin) therapy. Clin Endocrinol (Oxf) 67:623–628Google Scholar
  307. 307.
    Pijl H, Langendonk JG, Burggraaf J, Frölich M, Cohen AF, Veldhuis JD, Meinders AE (2001) Altered neuroregulation of GH secretion in viscerally obese premenopausal women. J Clin Endocrinol Metab 86:5509–5515PubMedGoogle Scholar
  308. 308.
    Boero L, Cuniberti L, Magnani N, Manavela M, Yapur V, Bustos M, Rosso LG, Meroño T, Marziali L, Viale L, Evelson P, Negri G, Brites F (2010) Increased oxidized low density lipoprotein associated with high ceruloplasmin activity in patients with active acromegaly. Clin Endocrinol (Oxf) 72:654–660Google Scholar
  309. 309.
    Mihailescu DV, Vora A, Mazzone T (2011) Lipid effects of endocrine medications. Curr Atheroscler, Rep, 13Google Scholar
  310. 310.
    Cersosimo E, Danou F, Persson M, Miles JM (1996) Effects of pulsatile delivery of basal growth hormone on lipolysis in humans. Am J Physiol 271:E123–E126PubMedGoogle Scholar
  311. 311.
    Surya S, Horowitz JF, Goldenberg N, Sakharova A, Harber M, Cornford AS, Symons K, Barkan AL (2009) The pattern of growth hormone delivery to peripheral tissues determines insulin-like growth factor-1 and lipolytic responses in obese subjects. J Clin Endocrinol Metab 94:2828–2834PubMedGoogle Scholar
  312. 312.
    Johansson JO, Oscarsson J, Bjarnason R, Bengtsson BA (1996) Two weeks of daily injections and continuous infusion of recombinant human growth hormone (GH) in GH-deficient adults. I. Effects on insulin-like growth factor-I (IGF-I), GH and IGF binding proteins, and glucose homeostasis. Metabolism 45:362–369PubMedGoogle Scholar
  313. 313.
    Jørgensen JO, Møller N, Lauritzen T, Christiansen JS (1990) Pulsatile versus continuous intravenous administration of growth hormone (GH) in GH-deficient patients: effects on circulating insulin-like growth factor-I and metabolic indices. J Clin Endocrinol Metab 70:1616–1623PubMedGoogle Scholar
  314. 314.
    Laursen T, Lemming L, Jorgensen JO, Klausen IC, Christiansen JS (1998) Different effects of continuous and intermittent patterns of growth hormone administration on lipoprotein levels in growth hormone-deficient patients. Horm Res 50:284–291PubMedGoogle Scholar
  315. 315.
    Oscarsson J, Ottosson M, Johansson JO, Wiklund O, Mårin P, Björntorp P, Bengtsson BA (1996) Two weeks of daily injections and continuous infusion of recombinant human growth hormone (GH) in GH-deficient adults. II. Effects on serum lipoproteins and lipoprotein and hepatic lipase activity. Metabolism 45:370–377PubMedGoogle Scholar
  316. 316.
    Marshall L, Mölle M, Böschen G, Steiger A, Fehm HL, Born J (1996) Greater efficacy of episodic than continuous growth hormone-releasing hormone (GHRH) administration in promoting slow-wave sleep (SWS). J Clin Endocrinol Metab 81:1009–1013PubMedGoogle Scholar
  317. 317.
    Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45:931–956PubMedGoogle Scholar
  318. 318.
    Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18PubMedGoogle Scholar
  319. 319.
    Thorner MO, Rogol AD, Blizzard RM, Klingensmith GJ, Najjar J, Misra R, Burr I, Chao G, Martha P, Mc Donald J (1988) Acceleration of growth rate in growth hormone-deficient children treated with human growth hormone-releasing hormone. Pediatr Res 24:145–151PubMedGoogle Scholar
  320. 320.
    Laursen T, Jørgensen JO, Jakobsen G, Hansen BL, Christiansen JS (1995) Continuous infusion versus daily injections of growth hormone (GH) for 4 weeks in GH-deficient patients. J Clin Endocrinol Metab 80:2410–2418PubMedGoogle Scholar
  321. 321.
    Hümmelink R, Sippell WG, Benoit KG, Danielson K, Faijerson Y (1993) Intranasal administration of growth hormone-releasing hormone (1–29)-NH2 in children with growth hormone deficiency: effects on growth hormone secretion and growth. Acta Pediatr 388:23–26Google Scholar
  322. 322.
    Steyn D, du Plessis L, Kotzé A (2010) Nasal delivery of recombinant human growth hormone: in vivo evaluation with Pheroid technology and N-trimethyl chitosan chloride. J Pharm Pharm Sci 13:263–273PubMedGoogle Scholar
  323. 323.
    Takeda A, Copper K, Bird A, Baxter L, Frampton GK, Gospodarevskaya E, Welch K, Bryant J (2010) Recombinant human growth hormone for the treatment of growth disorders in children: a systemic review and economic evaluation (Review). Health Technol Assess 14:1–209PubMedGoogle Scholar
  324. 324.
    Endocrine Society (2011) Evaluation and treatment of adult growth hormone deficiency: An endocrine society clinical practice guideline, J. Clin Endocrinol Metabol 96:1587–1609Google Scholar
  325. 325.
    Burman P, Johansson AG, Siegbahn A, Vessby B, Karlsson FA (1997) Growth hormone (GH)-deficient men are more responsive to GH replacement than women. J Clin Endocrinol Metab 82:550–555PubMedGoogle Scholar
  326. 326.
    Cook DM, Ludlam WH, Cook MB (1999) Route of estrogen administration helps to determine growth hormone (GH) replacement dose in GH-deficient adults. J Clin Endocrinol Metab 84:3956–3960PubMedGoogle Scholar
  327. 327.
    Johansson AG, Engström BE, Ljunghall S, Karlsson FA, Burman P (1999) Gender differences in the effects of long term growth hormone (GH) treatment on bone in adults with GH deficiency. J Clin Endocrinol Metab 84:2002–2007PubMedGoogle Scholar
  328. 328.
    Chapman IM, Bach MA, Van Cauter E, Farmer M, Krupa D, Taylor AM, Schilling LM, Cole KY, Skiles EH, Pezzoli SS, Hartman ML, Veldhuis JD, Gormley GJ, Thorner MO (1996) Stimulation of the growth hormone (GH)-insulin-like growth factor I axis by daily oral administration of a GH secretogogue (MK-677) in healthy elderly subjects. J Clin Endocrinol Metab 81:4249–4257PubMedGoogle Scholar
  329. 329.
    Ionescu M, Frohman LA (2006) Pulsatile secretion of growth hormone (GH) persists during continuous stimulation by CJC-1295, a long-acting GH-releasing hormone analog. J Clin Endocroniol Metab 91:4792–4797Google Scholar
  330. 330.
    Micic D, Casabiell X, Gualillo O, Pombo M, Dieguez C, Casanueva FF (1999) Growth hormone secretagogues: the clinical future. Horm Res 51:29–33PubMedGoogle Scholar
  331. 331.
    Nass R, Pezzoli SS, Oliveri MC, Patrie JT, Harrell FEJ, Clasey JL, Heymsfield SB, Bach MA, Vance ML, Thorner MO (2008) Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized, controlled trial. Ann Intern Med 149:601–611PubMedGoogle Scholar
  332. 332.
    Stanley TL, Chen CY, Branch KL, Makimura H, Grinspoon SK (2011) Effects of a growth hormone-releasing hormone analog on endogenous GH pulsatility and insulin sensitivity in healthy men. J Clin Endocrinol Metab 96:150–158PubMedGoogle Scholar
  333. 333.
    Méjean L, Kolopp M, Drouin P (1992) Chronobiology, nutrition, and diabetes. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Heidelberg, pp 375–385Google Scholar
  334. 334.
    Gualandi-Signorini AM, Giorgi G (2001) Insulin formulations – a review. Eur Rev Med Pharmacol Sci 5:73–83PubMedGoogle Scholar
  335. 335.
    Dessau E, Cameron F, Lee HB, Bequette BW, Zisser H, Jovanovic L, Chase HP, Wilson DM, Buckingham BA, Doyle FJ (2010) Real-time hypoglycemia prediction suite using continuous glucose monitoring. Diabetes Care 33:1249–1254Google Scholar
  336. 336.
    Keenan DB, Cartaya R, Mastrototaro JJ (2010) Accuracy of a new real-time continuous glucose monitoring algorithm. J Diabetes Sci Technol 4:111–118PubMedGoogle Scholar
  337. 337.
    Keenan DB, Cartaya R, Mastrototaro JJ (2010) The pathway to the closed-loop artificial pancreas: research and commercial perspectives. Pediatr Endocrinol Rev 7:445–451PubMedGoogle Scholar
  338. 338.
    Lee H, Buckingham BA, Wilson DM, Bequette BW (2009) A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator. J Diabetes Sci Technol 3:1082–1090PubMedGoogle Scholar
  339. 339.
    Parker RS, Doyle FJ, Peppas NA (1999) A model-based algorithm for blood glucose control in type I diabetes. IEEE Trans Biomed Eng 46:148–157PubMedGoogle Scholar
  340. 340.
    Bratusch-Marrain PR, Komjati M, Waldhäusl WK (1986) Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35:922–926PubMedGoogle Scholar
  341. 341.
    Courtney CH, Atkinson AB, Ennis CN, Sheridan B, Bell PM (2003) Comparison of the priming effects of pulsatile and continuous insulin delivery on insulin action in man. Metabolism 52:1050–1055PubMedGoogle Scholar
  342. 342.
    Meier JJ, Veldhuis JD, Butler PC (2005) Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54:1649–1656PubMedGoogle Scholar
  343. 343.
    Mirouze J, Selam JL, Pham TC (1977) Le pancréas artificial extra-corporel; nouvelle orientation du traitement insulinique. In: XIV Congrès Internat. Thérapeutique, Expansion Scientifique, Montpellier, France, pp 79–91Google Scholar
  344. 344.
    Mirouze J, Selam JL, Pham TC, Orsetti A (1977) Evaluation of exogenous insulin homeostatis by the artificial pancrease in insulin dependent diabetes. Diabetologia 13:273–278PubMedGoogle Scholar
  345. 345.
    Paolisso G, Scheen AJ, Giugliano D, Sgambato S, Albert A, Varricchio M, D'Onofrio F, Lefèbvre PJ (1991) Pulsatile insulin delivery has greater metabolic effects than continuous hormone administration in man; importance of pulse frequency. J Clin Endocrinol Metab 72:607–615PubMedGoogle Scholar
  346. 346.
    Matthews DR, Naylor BA, Jones RG, Ward GM, Turner RC (1983) Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 32:617–621PubMedGoogle Scholar
  347. 347.
    Berman N, Chou HF, Berman A, Ipp E (1993) A mathematical model of oscillatory insulin secretion. Am J Physiol 264:R839–R851PubMedGoogle Scholar
  348. 348.
    Jaspan JB, Lever E, Polonsky KS, Van Cauter E (1986) In vivo pulsatility of pancreatic islet peptides. Am J Physiol 251:E215–E226PubMedGoogle Scholar
  349. 349.
    Lefebvre PJ, Paolisso G, Scheen AJ, Henquin JC (1987) Pulsatility of insulin and glucagon release: physiological significance and pharmacological implications. Diabetologia 30:443–452PubMedGoogle Scholar
  350. 350.
    Gibson T, Stimmler L, Jarrett RJ, Rutland P, Shiu M (1975) Diurnal variation in the effects of insulin in blood glucose, plasma non-esterified fatty acids and growth hormone. Diabetologia 11:83–88PubMedGoogle Scholar
  351. 351.
    Debry G, Mejean L, Villaume C, Drouin P, Martin JM, Pointel JP, Gay G (1977) Chronobiologie et nutrition humaine. In: XIV Congrès Internat. Thérapeutique, Expansion Scientifique, Montpellier, France, pp 225–245Google Scholar
  352. 352.
    Mirouze J, Collard F (1973) Continous blood glucose monitoring in brittle diabetes. In: Proceedings 8th Int’l. Congr. Diabetes Fed., pp 532–545Google Scholar
  353. 353.
    Haus E, Nicolau G, Halberg F, Lakatua D, Sackett-Lundeen L (1983) Circannual variations in plasma insulin and C-peptide in clinically healthy subjects. Chronobiologia 10:132Google Scholar
  354. 354.
    Cawood EH, Bancroft J, Steel JM (1993) Perimenstrual symptoms in women with diabetes mellitus and the relationship to diabetic control. Diabet Med 10:444–448PubMedGoogle Scholar
  355. 355.
    Ruegemer JJ, Squires RW, Marsh HM, Haymond MW, Cryer PE, Rizza RA, Miles JM (1990) Differences between pre-breakfast and late afternoon glycemic response to exercise in IDDM patients. Diabetes Care 13:104–110PubMedGoogle Scholar
  356. 356.
    Aye T, Block J, Buckingham B (2010) Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems. Endocrinol Metab Clin North Am 39:609–624PubMedGoogle Scholar
  357. 357.
    Linkeschova R, Raoul M, Bott U, Berger M, Spraul M (2002) Less severe hypoglycemia, better metabolic control, and improved quality of life in type I diabetes mellitus with continuous subcutaneous insulin infusion (CSII) therapy; an observational study of 100 consecutive patients followed for a mean of 2 years. Diabet Med 19:746–751PubMedGoogle Scholar
  358. 358.
    Olinder AL, Nyhlin KT, Smide B (2011) Clarifying responsibility for self-management of diabetes in adolescents using insulin pumps – a qualitative study. J Adv Nurs 67:1547–1557PubMedGoogle Scholar
  359. 359.
    Revert A, Rossetti P, Calm R, Vehí J, Bondia J (2010) Combining basal-bolus insulin infusion for tight postprandial glucose control: an in silico evaluation in adults, children, and adolescents. J Diabetes Sci Technol 4:1424–1437PubMedGoogle Scholar
  360. 360.
    Walsh J, Roberts R, Bailey T (2010) Guidelines for insulin dosing in continuous subcutaneous insulin infusion using new formulas from a retrospective study of individuals with optimal glucose levels. J Diabetes Sci Technol 4:1174–1181PubMedGoogle Scholar
  361. 361.
    Cukierman-Yaffe T, Konvalina N, Cohen O (2011) Key elements for successful intensive insulin pump therapy in individuals with type 1 diabetes. Diabetes Res Clin Pract 92:69–73PubMedGoogle Scholar
  362. 362.
    Schwartz FL, Vernier SJ, Shubrook JH, Marling CR (2010) Evaluating the automated blood glucose pattern detection and case-retrieval modules of the 4 Diabetes Support System. J Diabetes Sci Technol 4:1563–1569PubMedGoogle Scholar
  363. 363.
    Dudde R, Vering T, Piechotta G, Hintsche R (2006) Computer-aided continuous drug infusion: setup and test of a mobile closed-loop system for the continuous automated infusion of insulin. IEEE Trans Inf Technol Biomed 10:395–402PubMedGoogle Scholar
  364. 364.
    Scaramuzza AE, Iafusco D, Rabbone I, Bonfanti R, Lombardo F, Schiaffini R, Buono P, Toni S, Cherubini V, Zuccoti GV, Diabetes Study Group of the Italian Society of S. Paediatric Endocrinology and Diabetology T (2011) Use of integrated real-time continuous glucose monitoring/insulin pump system in children and adolescents with type 1 diabetes: a 3-year follow-up study. Diabetes Technol Ther 13:99–103PubMedGoogle Scholar
  365. 365.
    Welsh JB, Kannard B, Nogueira K, Kaufman FR, Shah R (2010) Insights from a large observational database of continuous glucose monitoring adoption, insulin pump usage and glycemic control: the CareLinkTM database. Pediatr Endocrinol Rev 7:413–416PubMedGoogle Scholar
  366. 366.
    Mastrototaro J, Shin J, Marcus A, Sulur G (2008) The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes. Diabetes Technol Ther 10:385–390PubMedGoogle Scholar
  367. 367.
    Hermida RC, Ayala DE, Iglesias M (2003) Administration time-dependent influence of aspirin on blood pressure in pregnant women. Hypertension 41:651–656PubMedGoogle Scholar
  368. 368.
    Peppas N, Leobandung W (2004) Stimuli-sensitive hydrogels: ideal carriers for chronobiology and chronotherapy. J Biomater Sci Polym Ed 15:124–144Google Scholar
  369. 369.
    Rathbone MJ, Hadgraft J, Roberts MS (eds) (2003) Modified-release drug delivery technology. Marcel Dekker, New YorkGoogle Scholar
  370. 370.
    Youan B-BC (ed) (2009) Chronopharmaceutics. Wiley, HobokenGoogle Scholar
  371. 371.
    Moschou EA, Peteu SF, Bachas LG, Madou MJ, Daunert S (2004) Artificial muscle material with fast electroactuation under neutral pH conditions. Chem Mater 16:2499–2502Google Scholar
  372. 372.
    Prescott JH, Lipka S, Baldwin S, Sheppard NFJ, Maloney JM, Coppeta J, Yomtov B, Staples MA, Satini JTJ (2006) Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 24:437–438PubMedGoogle Scholar
  373. 373.
    Santini JT, Cima MJ, Langer R (1999) A controlled release microchip. Nat Biotechnol 397:335–338Google Scholar
  374. 374.
    Haus E, Touitou Y (1992) Chronobiology in circulating blood cells and platelets. In: Touitou Y, Haus E (eds) Chronobiology in laboratory medicine. Heidelberg, Springer, pp 504–526Google Scholar
  375. 375.
    Ohdo S, Koyanagi S, Matsunaga N, Hamdan A (2011) Molecular basis of chronopharmaceutics. J Pharm Sci 100:3560–3576Google Scholar
  376. 376.
    Mandal AS, Biswas N, Karim KM, Guha A, Chatterjee S, Behera M, Kuotsu K (2010) Drug delivery systems based on chronobiology--a review. J Control Release 147:314–325Google Scholar
  377. 377.
    Khan Z, Pillay V, Choonara YE, du Toit L (2010) Drug delivery technologies for therapeutic applications. Pharmaceut Develop Technol 14:602–612Google Scholar
  378. 378.
    Sewlall S, Pillay V, Danckwerts MP, Choonara YE, Ndesendo VM, du Toit LC (2010) A timely review of state-of-the-art chronopharmaceuticals synchronized with biological rhythms. Curr Drug Deliv 7:370–388Google Scholar

Copyright information

© Springer US 2012

Authors and Affiliations

  • Michael H. Smolensky
    • 1
  • Ronald A. Siegel
    • 2
    • 3
  • Erhard Haus
    • 4
    • 5
  • Ramon Hermida
    • 6
  • Francesco Portaluppi
    • 7
  1. 1.Department Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Departments of Pharmaceutics and Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Pharmaceutics WDH 9-177University of MinnesotaMinneapolisUSA
  4. 4.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  5. 5.HealthPartners Medical Group, Regions HospitalSt. PaulUSA
  6. 6.Bioengineering & Chronobiology LaboratoriesUniversity of VigoVigoSpain
  7. 7.Department of Clinical and Experimental Medicine, Hypertension CenterUniversity Hospital S. Anna, University of FerraraFerraraItaly

Personalised recommendations