Advertisement

Touch Sensitive Dielectric Elastomer Artificial Muscles

  • Todd Gisby
  • Ben O’Brien
  • Iain A. Anderson
Chapter

Abstract

Comb jellies are tiny sea animals that do not have brains, yet they can control the synchronous beat of hundreds of swimming paddles to navigate the water column in search of food. Waves of actuation travel down rows of paddles that run the length of the animal’s body to generate thrust. This is achieved using distributed local feedback and a simple control rule: each paddle only actuates when it is touched, and when it actuates it sweeps forward to touch the next paddle in line. No central brain is required to tell each paddle when to fire. We have created a scalable array of Dielectric Elastomer Actuators (DEA) that mimics the swimming paddles of the comb jelly and have implemented this array in a simple conveyor mechanism. Each DEA is made touch sensitive by sensing changes in its capacitance, eliminating the need for bulky external sensors. The array is inherently self-regulating and each DEA only actuates when it is touched, ensuring the conveyor automatically adjusts to the properties of the object being conveyed. This is a simple solution to a simple application, but it brings us one step closer to scalable, artificial muscle actuator arrays that might perform such useful tasks as assembly line conveyance and water propulsion. It also paves the way for more advanced systems that take into account DEA properties other than capacitance such as electrode resistance and leakage current.

Keywords

Dielectric elastomer  DEA  DEMES  Actuator Comb jelly ctenophore  Conveyor  Self-sensing 

References

  1. 1.
    Anderson IA, Kim L (2006) Force measurement. In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, New York, pp 1–4Google Scholar
  2. 2.
    Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A: Phys 64(1):77–85. doi: 10.1016/S0924-4247(97)01657-9 CrossRefGoogle Scholar
  3. 3.
    Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839. doi: 10.1126/science.287.5454.836 CrossRefGoogle Scholar
  4. 4.
    Madden JDW et al (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29(3):706–728CrossRefGoogle Scholar
  5. 5.
    Kofod G, Sommer-Larsen P, Kornbluh R, Pelrine R (2003) Actuation response of polyacrylate dielectric elastomers. J Intell Mater Syst Struct 14(12):787–793. doi: 10.1177/104538903039260 CrossRefGoogle Scholar
  6. 6.
    Kofod G, Sommer-Larsen P (2005) Silicone dielectric elastomer actuators: finite-elasticity model of actuation. Sens Actuators A: Phys 122(2):273–283. doi: 10.1016/j.sna.2005.05.001 CrossRefGoogle Scholar
  7. 7.
    McKay TG, Calius E, Anderson IA (2009) The dielectric constant of 3M VHB: a parameter in dispute. EAPAD 2009 Proc SPIE 7287:72870P. doi: 10.1117/12.815821
  8. 8.
    Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523CrossRefGoogle Scholar
  9. 9.
    Gisby TA (2011) Smart artificial muscles bioengineering. PhD Thesis. University of Auckland, NZGoogle Scholar
  10. 10.
    Buchsbaum R, Buchsbaum M, Pearse J, Pearse V (1987) Animals without backbones, 3rd edn. The University of Chicago Press, ChicagoGoogle Scholar
  11. 11.
    O’Brien B, Gisby T, Calius E, Xie S, Anderson I (2009) FEA of dielectric elastomer minimum energy structures as a tool for biomimetic design. Proc. SPIE 7287:728706-1-728706-11. doi: 10.1117/12.815818 Google Scholar
  12. 12.
    Kofod G, Wirges W, Paajanen M, Bauer S (2007) Energy minimization for self-organized structure formation and actuation. Appl Phy Lett 90(8):081916-1–081916-3. doi: 10.1063/1.2695785 CrossRefGoogle Scholar
  13. 13.
    Toth LA and Goldenberg AA (2002) Control system design for a dielectric elastomer actuator: the sensory subsystem. EAPAD 2002 Proc SPIE 4695:323. doi: 10.1117/12.475179
  14. 14.
    Jung K, Kim KJ, Choi HR (2008) A self-sensing dielectric elastomer actuator. Sens Actuators A: Phys 143(2):343–351. doi: 10.1016/j.sna.2007.10.076 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Keplinger C, Kaltenbrunner M, Arnold N, Bauer S (2008) Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl Phy Lett 92(19):192903-1–192903-3. doi: 10.1063/1.2929383 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Biomimetics LaboratoryAuckland Bioengineering InstituteAucklandNew Zealand
  2. 2.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations