Skip to main content

On Detection of Community Structure in Dynamic Social Networks

  • Chapter
  • First Online:
  • 2680 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 58))

Abstract

Community structure is a very special and interesting property of social networks. Knowledge of network community structure not only provides us key insights into developing more social-aware strategies for social network problems, but also promises a wide range of applications enabled by mobile networking, such as routings in Mobile Ad Hoc Networks (MANETs) and worm containments in cellular networks. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social activities and interactions tend to come and go rapidly. Can we quickly and efficiently identify the network community structure? Can we adaptively update this structure based on its history instead of recomputing from scratch?In this chapter, we present two methods for detecting community structures on social networks. First, we introduce Quick Community Adaptation (QCA), an adaptive modularity-based method for identifying and tracing the discrete community structure of dynamic social networks. This approach has not only the power of quickly and efficiently updating the network structure by only using the identified structures, but also the ability of tracing the evolution of its communities over time. Next, we present DOCA, an quick method for revealing the overlapping network communities that can be implemented in a decentralized manner. To illustrate the effectiveness of our methods, we extensively test QCA and DOCA on not only synthesized but also on real-world dynamic social networks including ENRON email network, arXiv e-print citation network and Facebook network. Finally, we demonstrate the bright applicability of our methods via two realistic applications on routing strategies in MANETs and worm containment on online social networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 eferences

  1. M. Girvan and M. E. J. Newman. Community structure in social and biological networks. PNAS, 99, 2002.

    Google Scholar 

  2. G. Palla, P. Pollner, A. Barabasi, and T. Vicsek. Social group dynamics in networks. Adaptive Networks, 2009.

    Google Scholar 

  3. A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative analysis. Physical review. E. 80, 2009.

    Google Scholar 

  4. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 2003.

    Google Scholar 

  5. V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech.: Theory and Experiment, 2008.

    Google Scholar 

  6. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phy. Rev. E 69, 2004.

    Google Scholar 

  7. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 2008.

    Google Scholar 

  8. A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. Phys. Rev. E 70, Aug 2004.

    Google Scholar 

  9. S. Fortunato and M. Barthelemy. Resolution limit in community detection. PNAS, 104, 2007.

    Google Scholar 

  10. Z. Ye, S. Hu, and J. Yu. Adaptive clustering algorithm for community detection in complex networks. Physical Review E, 78, 2008.

    Google Scholar 

  11. S. Jimeng, C. Faloutsos, S. Papadimitriou, and Philip S. Yu. Graphscope: parameter-free mining of large time-evolving graphs. In KDD, 2007.

    Google Scholar 

  12. ArXiv dataset. http://www.cs.cornell.edu/projects/kddcup/datasets.html.KDD Cup 2003, Feb 2003.

  13. B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in facebook. In 2nd ACM SIGCOMM Workshop on Social Networks, 2009.

    Google Scholar 

  14. T. N. Dinh, Y. Xuan, and M. T. Thai. Towards social-aware routing in dynamic communication networks. IPCCC, 2009.

    Google Scholar 

  15. P. Hui and J. Crowcroft. How small labels create big improvements. PERCOMW, 2007.

    Google Scholar 

  16. E. M. Daly and M. Haahr. Social network analysis for routing in disconnected delay-tolerant manets. In MobiHoc ’07, 2007.

    Google Scholar 

  17. A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6, 2007.

    Google Scholar 

  18. P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-based forwarding in delay tolerant networks. In MobiHoc ’08, 2008.

    Google Scholar 

  19. E. Nathan and A. Pentland. Reality mining: sensing complex social systems. Personal Ubiquitous Comput., 10(4), 2006.

    Google Scholar 

  20. Koobface. http://www.pcworld.com/article/155017/\\facebook\_virus\_turns\_your\_computer\_into\_a\_zombie.html.PC World, 2008.

    Google Scholar 

  21. Koobface. http://news.cnet.com/koobface-virus-hits-facebook/.CNET, 2008.

  22. V. Sekar, Y. Xie, M. K. Reiter, and H. Zhang. A multi-resolution approach forworm detection and containment. In DSN ’06, 2006.

    Google Scholar 

  23. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms. In SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium, 2004.

    Google Scholar 

  24. R. Dantu, J. W. Cangussu, and S. Patwardhan. Fast worm containment using feedback control. IEEE Trans. Dependable Secur. Comput., 4(2), 2007.

    Google Scholar 

  25. H. Kim and B. Karp. Autograph: toward automated, distributed worm signature detection. In SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium, 2004.

    Google Scholar 

  26. N. James, B. Karp, and S. Dawn. Polygraph: Automatically generating signatures for polymorphic worms. In IEEE Symposium on Security and Privacy, pages 226–241, 2005.

    Google Scholar 

  27. P. Wang, M. C. González, C. A. Hidalgo, and A. Barabasi. Understanding the spreading patterns of mobile phone viruses. Science, 324, 2009.

    Google Scholar 

  28. A. Bose and K. G. Shin. Proactive security for mobile messaging networks. In WiSe ’06: Proceedings of the 5th ACM workshop on Wireless security, 2006.

    Google Scholar 

  29. A. Bose, X. Hu, K.G. Shin, and T. Park. Behavioral detection of malware on mobile handsets. In MobiSys ’08, New York, NY, USA, 2008.

    Google Scholar 

  30. Z. Zou, G. Cao, S. Zhu, S. Ranjan, and A. Nucci. A social network based patching scheme for worm containment in cellulat networks. In IEEE INFOCOM, 2009.

    Google Scholar 

  31. J. P. Bagrow Y.Y. Ahn and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature, 466:761–764, 2010.

    Google Scholar 

  32. S. Fortunato and C. Castellano. Community structure in graphs. eprint arXiv: 0712.2716, 2007.

    Google Scholar 

  33. A. Lancichinetti, S. Fortunato, and K. Jnos. Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3):033015, 2009.

    Google Scholar 

  34. A. Lzr, D. bel, and T. Vicsek. Modularity measure of networks with overlapping communities. (Europhysics Letters), 90(1), 2010.

    Google Scholar 

  35. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 – 174, 2010.

    Article  MathSciNet  Google Scholar 

  36. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW08, pages 695–704. ACM, 2008.

    Google Scholar 

  37. C. Lee, F. Reid, A. McDaid, and N. Hurley. Detecting highly overlapping community structure by greedy clique expansion. KDD, 2010.

    Google Scholar 

  38. G. Palla, I. Derenyi, I. Farkas1, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(10), 2005.

    Google Scholar 

  39. Steve Gregory. Finding overlapping communities in networks by label propagation. New Journal of Physics, 12(10):103018, 2010.

    Google Scholar 

  40. R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the bursty evolution of blogspace. In Proceedings of the 12th international conference on World Wide Web, WWW ’03, 2003.

    Google Scholar 

  41. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In KDD, 2005.

    Google Scholar 

  42. M. Toyoda and M. Kitsuregawa. Extracting evolution of web communities from a series of web archives. In HYPERTEXT ’03, 2003.

    Google Scholar 

  43. P. Hui, E. Yoneki, S. Chan, and J. Crowcroft. Distributed community detection in delay tolerant networks. In Proc. MobiArch, 2007.

    Google Scholar 

  44. J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking evolving communities in large linked networks. PNAS, 101, 2004.

    Google Scholar 

  45. Y. Zhang, J. Wang, Y. Wang, and L. Zhou. Parallel community detection on large networks with propinquity dynamics. In KDD ’09. ACM, 2009.

    Google Scholar 

  46. Y-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Analyzing communities and their evolutions in dynamic social networks. ACM Trans. Knowl. Discov. Data, 3, 2009.

    Google Scholar 

  47. T. Chayant and B. Tanya. Constant-factor approximation algorithms for identifying dynamic communities. In KDD ’09, 2009.

    Google Scholar 

  48. L. Peel. Estimating network parameters for selecting community detection algorithms. FUSION, 2010.

    Google Scholar 

  49. S. Gregory. An algorithm to find overlapping community structure in networks. In PKDD 2007, pages 91–102. Springer, 2007.

    Google Scholar 

  50. V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech.: Theory and Experiment, 2009(03):P03024, 2009.

    Google Scholar 

  51. H-W. Shen, X-Q. Cheng, and J-F. Guo. Quantifying and identifying the overlapping community structure in networks. J. Stat. Mech. Theory and Experiment, 2009(07):P07042 + , 2009.

    Google Scholar 

  52. T. S. Evans. and R. Lambiotte. Line graphs, link partitions, and overlapping communities. Phys. Rev. E, 80(1):016105, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam P. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nguyen, N.P., Xuan, Y., Thai, M.T. (2012). On Detection of Community Structure in Dynamic Social Networks. In: Thai, M., Pardalos, P. (eds) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications(), vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0857-4_11

Download citation

Publish with us

Policies and ethics