Super Resolution Methods Implementing Diffractive Masks Having a Certain Degree of Periodicity

  • Alex Zlotnik
  • Zeev Zalevsky
  • Vicente Micó
  • Javier García
  • Bahram Javidi
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


This section presents an approach that provides super resolved imaging at the center of the field of view and yet allows to see the remaining of the original field of view with original resolution. This operation resembles optical zooming while the zoomed and the nonzoomed images are obtained simultaneously. This is obtained by taking a single snap-shot and using a single imaging lens. The technique utilizes a special static/still coding element and a postprocessing algorithmic, without any mechanical movements.


Gray Level Spatial Light Modulator Imaging Lens Gray Code Super Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Johnson, R.B., Feng, C.: Mechanically compensated zoom lenses with a single moving element. Appl. Opt. 31, 2274–2280 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    Tam, E.C.: Smart electro optical zoom lens. Opt. Lett. 17, 369–371 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    Tsuchida, H., Aoki, N., Hyakumura, K., Yamamoto, K.: Design of zoom lens systems that use gradient-index materials. Appl. Opt. 31, 2279–2286 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Pegis, R.J., Peck, W.G.: First-order design theory for linearly compensated zoom systems. J. Opt. Soc. Am. 52, 905–911 (1962)ADSCrossRefGoogle Scholar
  5. 5.
    Wooters, G., Silvertooth, E.W.: Optically compensated zoom lens. J. Opt. Soc. Am. 55, 347–355 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    ChunKan, T.: Design of zoom system by the varifocal differential equation. I. Appl. Opt. 31, 2265–2273 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Ito, Y.: Complicated pin-and-slot mechanism for a zoom lens. Appl. Opt. 18, 750–758 (1979)ADSGoogle Scholar
  8. 8.
    Shafer, D.R.: Zoom null lens. Appl. Opt. 18, 3863–3870 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    Tanaka, K.: Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type. Appl. Opt. 21, 2174–2181 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, D.Y., Justis, N., Lo, Y.H.: Integrated fluidic adaptive zoom lens. Opt. Lett. 29, 2855–2857 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Walter, A.: Zoom lens and computer algebra. J. Opt. Soc. Am. A 16, 198–204 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Akram, M.N., Asghar, M.H.: Step-zoom dual-field-of -view infrared telescope. Appl. Opt. 42, 2312–2316 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Walther, A.: Angle eikonals for a perfect zoom system. J. Opt. Soc. Am. A 18, 1968–1971 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Zalevsky, Z., Zlotnik, A.: Single snap-shot double field optical zoom. Opt. Exp. 13, 9858–9868 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Solomon, J., Zalevsky, Z., Mendlovic, D.: Geometrical super resolution by code division multiplexing. Appl. Opt. 44, 32–40 (2005)ADSGoogle Scholar
  16. 16.
    Dammann, H., Klotz, E.: Coherent optical generation and inspection of two-dimensional periodic structures. Opt. Acta 24, 505–515 (1977)ADSGoogle Scholar
  17. 17.
    Lukosz, W.: Optical systems with resolving powers exceeding the classical limits. J. Opt. Soc. Am. 56, 1463–1472 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    Bachl, A., Lukosz, W.: Experiments on superresolution imaging of a reduced object field. J. Opt. Soc. Am. 57, 163–169 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    Sabo, E., Zalevsky, Z., Mendlovic, D., Konforti, N., Kiryuschev, I.: Super resolution optical system using two fixed generalized Dammann gratings. Appl. Opt. 39, 5318–5325 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Zalevsky, Z., Mendlovic, D., Lohmann, A.W.: Super resolution optical systems using fixed gratings. Opt. Commun. 163, 79–85 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Sabo, E., Zalevsky, Z., Mendlovic, D., Konforti, N., Kiryuschev, I.: Super resolution optical system using three fixed generalized gratings: experimental results. J. Opt. Soc. Am. A 18, 514–520 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    García, J., Micó, V., Cojoc, D., Zalevsky, Z.: Full field of view superresolution imaging based on two static gratings and white light illumination. Appl. Opt. 47, 3080–3087 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Zalevsky, Z., Mendlovic, D., Lohmann A.W.: Progress in optics. In: Wolf, E. (ed.) Optical System with Improved Resolving Power, vol. XL,  Chap. 4. North Holland, Amsterdam, (1999)
  24. 24.
    Zalevsky, Z., Mendlovic, D.: Optical Super Resolution. Springer, New York (2003)Google Scholar
  25. 25.
    Zalevsky, Z., García-Martínez, P., García, J.: Superresolution using gray level coding. Opt. Exp. 14, 5178–5182 (2006)CrossRefGoogle Scholar
  26. 26.
    Gray, F.: Pulse code communication. US Patent 2,632,058, 17 Mar 1953Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alex Zlotnik
    • 1
  • Zeev Zalevsky
    • 1
  • Vicente Micó
    • 2
  • Javier García
    • 2
  • Bahram Javidi
    • 3
  1. 1.School of EngineeringBar-Ilan UniversityRamat-GanIsrael
  2. 2.Departamento de ÓpticaUniversitat de ValenciaBurjassotSpain
  3. 3.Department of Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations