Multi-net Sizing and Spacing of Bundle Wires

  • Konstantin Moiseev
  • Avinoam Kolodny
  • Shmuel Wimer


At this point, we move from net-by-net optimization to simultaneous optimization of multiple nets. The description of multi-net optimization algorithms begins from considering a simple structure – a bundle of equal-length parallel wires. The methods described in this chapter will be generalized in the next chapter for more general layouts.


Wire Segment Parallel Wire Wire Width Effective Driver MinMax Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Boyd 07]
    Boyd, S., Kim, S. J., Vandenberghe, L., & Hassibi, A. (2007). A tutorial on geometric programming. Optimization and engineering, 8(1), 67–127.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [Cederbaum 92]
    I. Cederbaum, I. Koren and S. Wimer, “Balanced block spacing for VLSI layout,” Discrete Applied Mathematics, Vol. 40, Issue 3, 1992, pp. 308–318.CrossRefMathSciNetGoogle Scholar
  3. [Chaudhary 92]
    K. Chaudhary and M. Pedram, “A near optimal algorithm for technology mapping minimizing area under delay constraints”, Proceeding of Design Automation Conference, July 1992, pp. 492–498.Google Scholar
  4. [Chen 05]
    R. Chen and H. Zhou, “An Efficient Data Structure for Maxplus Merge in Dynamic Porgramming”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, pp. 3004–3009.Google Scholar
  5. [Cheng 00]
    C.-K. Cheng, J. Lillis, S. Lin and N.H. Chang, Interconnect Analysis and Synthesis, John Wiley Press, 2000Google Scholar
  6. [Cong 94]
    J. Cong and C. Koh, “Simultaneous Driver and Wire Sizing for Performance and Power Optimization”, IEEE Transactions on VLSI, vol. 2, no. 4, 1994Google Scholar
  7. [Garey 79]
    M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, 1979.Google Scholar
  8. [Hodges 04]
    D. A. Hodges, H. G. Jackson and R. A. Saleh, Analysis and Design of Digital Integrated Circuits, McGraw Hill, 3rd edition, 2004.Google Scholar
  9. [Li 93]
    W-N. Li, A. Lim, P. Agrawal and S. Sahani, “On circuit implementation problem”, IEEE TCAD, 1993, pp. 1147–1156.Google Scholar
  10. [Moiseev 09]
    16. K. Moiseev, A. Kolodny and S. Wimer, “Power-Delay Optimization in VLSI Microprocessors by Wire Spacing,” ACM Transactions on Design Automation of Electronic Systems (TODAES), Volume 14, Issue 4 (August 2009), Article No. 55, 2009, ISSN: 1084–4309.Google Scholar
  11. [Noble 88]
    B. Noble and J.W. Daniel, Applied linear algebra, Prentice-Hall International, 3rd edition, 1988.Google Scholar
  12. [Shi 03]
    W. Shi and Z. Li, “An O(nlogn) time algorithm for optimal buffer insertion”, Proceedings of Design Automation Conference, 2003, pp. 580–585Google Scholar
  13. [van Ginnekken 90]
    L.P.P.P van Ginneken, “Buffer Placement in Distributed RC-Tree Networks for Minimal Elmore Delay,” Proc. International Symposium on Circuits and Systems, pp. 865–868, 1990.Google Scholar
  14. [Webb 08]
    C. Webb, “45 nm Design for Manufacturing”, Intel Technology Journal, 2008Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Konstantin Moiseev
    • 1
  • Avinoam Kolodny
    • 2
  • Shmuel Wimer
    • 3
  1. 1.IntelHaifaIsrael
  2. 2.TechnionHaifaIsrael
  3. 3.Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations