SRAM Bitcell Design Using Unidirectional Devices

  • Jawar Singh
  • Saraju P. Mohanty
  • Dhiraj K. Pradhan


For ultra-low power applications, steep sub-threshold slope transistors are promising candidate to replace the traditional MOSFETs. The limitations of Inter-Band Tunnel Field Effect Transistors (TFETs) due to unidirectional current conduction behaviour have been explored in this chapter for successful realization of compact SRAM bitcell for ultra-low supply voltages. Since, asymmetric current conduction in TFETs limits the viability of realization of 6T SRAM bitcells. A case study of 6T SRAM bitcell design using Si-TFETs for reliable operation with low leakage at ultra low voltages is presented. It is also demonstrated that a functional 6T TFET SRAM design with comparable stability margins and faster performances at low voltages can be realized using unidirectional TFETs devices when compared with the 7T TFET SRAM bitcell.


Read Operation Sense Amplifier Virtual Ground Static Noise Margin Access Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 14.
    Bhuwalka, K., Sedlmaier, S., Ludsteck, A., Tolksdorf, C., Schulze, J., Eisele, I.: Vertical tunnel field-effect transistor. IEEE Trans. Electron Device 51(2), 279–282 (2004). doi: 10.1109/TED.2003.821575 CrossRefGoogle Scholar
  2. 24.
    Chang, L., Nakamura, Y., Montoye, R., Sawada, J., Martin, A., Kinoshita, K., Gebara, F., Agarwal, K., Acharyya, D., Haensch, W., Hosokawa, K., Jamsek, D.: A 5.3 ghz 8T-SRAM with operation down to 0.41 v in 65 nm CMOS. In: IEEE Symposium on VLSI Circuits, 2007, Kyoto, pp. 252–253 (2007)Google Scholar
  3. 28.
    Chen, G.K., Blaauw, D., Mudge, T., Sylvester, D., Kim, N.S.: Yield-driven near-threshold SRAM design. In: ICCAD ’07: Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design, Lyon, pp. 660–666. IEEE Press, Piscataway (2007)Google Scholar
  4. 32.
    Fair, R., Wivell, H.: Zener and avalanche breakdown in As-implanted low-voltage Si n-p junctions. IEEE Trans. Electron Devices 23(5), 512–518 (1976)CrossRefGoogle Scholar
  5. 36.
    Jiajing W., Nalam, S., Calhoun, B.H.: Analyzing static and dynamic write margin for nanometer SRAMs, ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 129–134 (2008) doi:  10.1145/1393921.1393954.
  6. 40.
    Heald, R., Wang, P.: Variability in sub-100 nm SRAM designs. In: International Conference on Computer Aided Design, 2004. ICCAD-2004, San Jose, pp. 347–352 (2004)Google Scholar
  7. 45.
    Hurkx, G., Klaassen, D., Knuvers, M.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2), 331–338 (1992). doi: 10.1109/16.121690 CrossRefGoogle Scholar
  8. 46.
    Ieong, M., Solomon, P., Laux, S., Wong, H.S., Chidambarrao, D.: Comparison of raised and schottky source/drain mosfets using a novel tunneling contact model. In: International Electron Devices Meeting, 1998. IEDM ’98 Technical Digest, pp. 733–736 (1998). doi: 10.1109/IEDM.1998.746461
  9. 48.
    ITRS: International technology road map for semiconductors, test and test equipments. (2006)
  10. 56.
    Khare, M., Ku, S., Donaton, R., Greco, S., Brodsky, C., Chen, X., Chou, A., DellaGuardia, R., Deshpande, S., Doris, B., Fung, S., Gabor, A., Gribelyuk, M., Holmes, S., Jamin, F., Lai, W., Lee, W., Li, Y., McFarland, P., Mo, R., Mittl, S., Narasimha, S., Nielsen, D., Purtell, R., Rausch, W., Sankaran, S., Snare, J., Tsou, L., Vayshenker, A., Wagner, T., Wehella-Gamage, D., Wu, E., Wu, S., Yan, W., Barth, E., Ferguson, R., Gilbert, P., Schepis, D., Sekiguchi, A., Goldblatt, R., Welser, J., Muller, K., Agnello, P.: A high performance 90 nm SOI technology with 0.992 m2 6T-SRAM cell. In: International Electron Devices Meeting, 2002. IEDM ’02. Digest, pp. 407–410 (2002). doi: 10.1109/IEDM.2002.1175865
  11. 59.
    Kim, D., Lee, Y., Cai, J., Lauer, I., Chang, L., Koester, S.J., Sylvester, D., Blaauw, D.: Low power circuit design based on heterojunction tunneling transistors (HETTs). In: Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED ’09, pp. 219–224. ACM, New York (2009). doi: Scholar
  12. 72.
    Lin, J., Toh, E., Shen, C., Sylvester, D., Heng, C., Samudra, G., Yeo, Y.: Compact HSPICE model for IMOS device. Electron. Lett. 44(2), 91–92 (2008). doi: 10.1049/el:20083116 CrossRefGoogle Scholar
  13. 77.
    Meterelliyoz, M., Kulkarni, J.P., Roy, K.: Thermal analysis of 8-T SRAM for nano-scaled technologies. In: ISLPED ’08: Proceeding of the 13th International Symposium on Low Power Electronics and Design, pp. 123–128. ACM, New York (2008). doi: Scholar
  14. 78.
    Mookerjea, S., Datta, S.: Comparative study of si, ge and inas based steep subthreshold slope tunnel transistors for 0.25 v supply voltage logic applications. In: Device Research Conference, 2008, pp. 47–48 (2008). doi: 10.1109/DRC.2008.4800730
  15. 79.
    Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors. IEEE, Electron Device Letters, 30(10), 1102–1104 (2009). doi: 10.1109/LED.2009.2028907.
  16. 88.
    PTM: Predictive technology model. In: Nanoscale Integration and Modeling (NIMO) Group. Arizona State University, Arizona. (2008)
  17. 89.
    Reddick, W.M., Amaratunga, G.A.J.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995). doi: 10.1063/1.114547. Google Scholar
  18. 92.
    Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron. 36(1), 19–34 (1993). doi: 10.1016/0038--1101(93)90065-X.
  19. 94.
    Seevinck, E., List, F., Lohstroh, J.: Static-noise margin analysis of MOS SRAM cells. J. Solid-State Circuit 25(2), 784–754 (1987)Google Scholar
  20. 96.
    Sentaurus, S.: TCAD Sentaurus Device Manual, Release: Z-2007.03. Synopsys (2003)Google Scholar
  21. 99.
    Singh, J., Ramakrishnan, K., Mookerjea, S., Datta, S., Vijaykrishnan, N., Pradhan, D.: A novel Si-tunnel FET based SRAM design for ultra low-power 0.3 v vdd applications. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, ASPDAC ’10, pp. 181–186. IEEE Press, Piscataway (2010).
  22. 101.
    Suzuki, T., Yamauchi, H., Yamagami, Y., Satomi, K., Akamatsu, H.: A stable 2-port SRAM cell design against simultaneously read/write-disturbed accesses. IEEE J. Solid-State Circuit 43(9), 2109–2119 (2008)CrossRefGoogle Scholar
  23. 102.
    Sylvester, D.: Low power circuit design based on heterojunction tunneling transistors. In: Device Research Conference, Steep Slope or Slippery Slope, Rump Session, pp. 47–48 (2009). doi: 10.1109/DRC.2008.4800730
  24. 108.
    Verma, N., Chandrakasan, A.P.: A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuit 43(1), 141–149 (2008)CrossRefGoogle Scholar
  25. 110.
    Wang, P.F.: Complementary tunneling FETs (CTFET) in CMOS technology. Ph.D. thesis, TU Munchen, Munich (2003).
  26. 122.
    Zhang, K., Bhattacharya, U., Chen, Z., Hamzaoglu, F., Murray, D., Vallepalli, N., Wang, Y., Zheng, B., Bohr, M.: A 3-ghz 70 mb SRAM in 65 nm CMOS technology with integrated column-based dynamic power supply. In: IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC, 2005, vol. 1, pp. 474–611 (2005).
  27. 123.
    Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45 nm design exploration. In: ISQED ’06: Proceedings of the 7th International Symposium on Quality Electronic Design, pp. 585–590. IEEE Computer Society, Washington (2006). doi:

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jawar Singh
    • 1
  • Saraju P. Mohanty
    • 2
  • Dhiraj K. Pradhan
    • 3
  1. 1.Indian Institute of Information Technology Design and ManufacturingJabalpurIndia
  2. 2.University of North TexasDentonUSA
  3. 3.University of BristolBristolUK

Personalised recommendations