Advertisement

Low-Power Electron Devices

  • Nobuyuki Sugii
Chapter

Abstract

Low-power electron devices are extremely important in terms of energy saving by taking advantage of the information and communication technology (ICT) as well as power reduction of electronic apparatuses themselves. Although the low-power approaches should be done in every technological aspect of the ICT technology, the low-power electron device (CMOS) technology is especially important because this technology is in a core part of many ICT apparatus technology.

Keywords

Gate Electrode Leakage Power SiGe Layer Static Random Access Memory Equivalent Oxide Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117Google Scholar
  2. 2.
  3. 3.
    Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J Solid State Circuits 9(5):256–268CrossRefGoogle Scholar
  4. 4.
    http://www.sia-online.org/ (roadmap currently unavailable)
  5. 5.
  6. 6.
    Chandrakasan AP, Daly DC, Finchelstein DF, Kwong J, Ramadass YK, Sinangil ME, Sze V, Verma N (2010) Technologies for ultradynamic voltage scaling. Proc IEEE 98(2):191–214CrossRefGoogle Scholar
  7. 7.
    Zhai B, Nazhandali L, Olson J, Reeves A, Minuth M, Helfand R, Pant S, Blaauw D, Austin T (2006) A 2.60pJ/Inst subthreshold sensor processor for optimal energy efficiency. In: IEEE VLSI 2006 circuit, pp 154–155Google Scholar
  8. 8.
    Nakai M, Akui S, Seno K, Meguro T, Seki T, Kondo T, Hashiguchi A, Kawahara H, Kumano K, Shimura M (2005) Dynamic voltage and frequency management for a low-power embedded microprocessor. IEEE J Solid State Circuits 40(1):28–35CrossRefGoogle Scholar
  9. 9.
    Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York, pp 35–39Google Scholar
  10. 10.
    Itoh K (2009) Adaptive circuits for the 0.5-V nanoscale CMOS era. In: IEEE international solid-state circuits conference, pp 14–20Google Scholar
  11. 11.
    Asenov A (2010) Statistical nano CMOS variability and its impact on SRAM. In: Singhee A, Rutenbar RA (eds) extreme statistics in nanoscale memory design, integrated circuits and systems, chapter 3. Springer Science + Business Media, LLC, New YorkGoogle Scholar
  12. 12.
    Pelgrom MJM, Duinmaijer ACJ, Welbers APG (1989) Matching properties of MOS transistors. IEEE J Solid State Circuits 24(5):1433–1439CrossRefGoogle Scholar
  13. 13.
    Bult K (2000) Analog design in deep sub-micron CMOS. In Proceedings of 26th ESSCIRC, pp 126–132Google Scholar
  14. 14.
    Tsunomura T, Nishida A, Yano F, Putra AT, Takeuchi K, Inaba S, Kamohara S, Terada K, Hiramoto T, Mogami T (2008) Analyses of 5σ Vth fluctuation in 65 nm-MOSFETs using Takeuchi plot. In: IEEE VLSI 2008 technology, pp 156–157Google Scholar
  15. 15.
    Lo S-H, Buchanan DA, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett 18(5):209–211CrossRefGoogle Scholar
  16. 16.
    Robertson J (2005) Interfaces and defects of high-K oxides on silicon. Solid State Electron 49(3):283–293CrossRefGoogle Scholar
  17. 17.
    Hobbs CC, Fonseca LRC, Knizhnik A, Dhandapani V, Samavedam SB, Taylor WJ, Grant JM, Dip LG, Triyoso DH, Hegde RI, Gilmer DC, Garcia R, Roan D, Lovejoy ML, Rai RS, Hebert EA, Tseng H-H, Anderson SGH, White BE, Tobin PJ (2004) Fermi-level pinning at the polysilicon/metal oxide interface—part I. IEEE Trans Electron Devices 51(6):971–977CrossRefGoogle Scholar
  18. 18.
    Shiraishi K, Yamada K, Torii K, Akasaka Y, Nakajima K, Konno M, Chikyow T, Kitajima H, Arikado T (2004) Oxygen vacancy induced substantial threshold voltage shifts in the Hf-based high-K MISFET with p+ poly-Si Gates—a theoretical approach. Jpn J Appl Phys 43(11A):L 1413–L 1415Google Scholar
  19. 19.
    Chau R, Datta S, Doczy M, Doyle B, Kavalieros J, Metz M (2004) High-k/metal-gate stack and its MOSFET characteristics. IEEE Electron Device Lett 25(6):408–410Google Scholar
  20. 20.
    Saito S, Torii K, Hiratani M, Onai T (2002) Improved theory for remote-charge-scattering-limited mobility in metal—oxide—semiconductor transistors. Appl Phys Lett 81(13):2391–2393CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Brews JR, Fichtner W, Nicollian EH, Sze SM (1980) Generalized guide for MOSFET miniaturization. IEEE Electron Device Lett 1(1):2–4CrossRefGoogle Scholar
  23. 23.
    Yan R-H, Ourmazd A, Lee KF (1992) Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans Electron Devices 39(7):1704–1710CrossRefGoogle Scholar
  24. 24.
    Yeh PC, Fossum JG (1995) Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SO1 low-voltage CMOS technology. IEEE Trans Electron Devices 42(9):1605–1613CrossRefGoogle Scholar
  25. 25.
    Colinge JP (ed) (2008) FinFETs and other multi-gate transistors. Springer Science + Business Media, LLC, New York, pp 28–36Google Scholar
  26. 26.
    Uchida K, Watanabe H, Kinoshita A, Koga J, Numata T, Takagi S (2002) Experimental study on carrier transport mechanism in ultrathin-body SOI n-and p-MOSFETs with SOI thickness less than 5 nm. In: IEDM technical digest, pp 47–50Google Scholar
  27. 27.
    Taur Y, Ning TH (1998) Fundamentals of modern VLSI devices. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Takeuchi K, Tatsumi T, Furukawa A (1997) Channel engineering for the reduction of random-dopant-placement-induced threshold voltage fluctuation. In: IEDM technical digest, pp 841–844Google Scholar
  29. 29.
    Ohtou T, Sugii N, Hiramoto T (2007) Impact of parameter variations and random dopant fluctuations on short-channel fully depleted SOI MOSFETs with extremely thin BOX. IEEE Electron Device Lett 28(8):740–742CrossRefGoogle Scholar
  30. 30.
    Hiramoto T, Mizutani T, Kumar A, Nishida A, Tsunomura T, Inaba S, Takeuchi K, Kamohara S, Mogami T (2010) Suppression of DIBL and current-onset voltage variability in intrinsic channel fully depleted SOI MOSFETs. In: IEEE 2010 SOI Conference, pp 170–171Google Scholar
  31. 31.
    Miyazaki M, Ono G, Ishibashi K (2002) A 1.2-GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias. IEEE J Solid State Circuits 37(2):210–217Google Scholar
  32. 32.
    Tsuchiya R, Horiuchi M, Kimura S, Yamaoka M, Kawahara T, Maegawa S, Ipposhi T, Ohji Y, Matsuoka H (2004) Silicon on thin BOX: a new paradigm of the CMOSFET for low-power and high-performance application featuring wide-range back-bias control. In: IEDM technical digest, pp 631–634Google Scholar
  33. 33.
    Nagumo T, Hiramoto T (2006) Design Guideline of Multi-Gate MOSFETs With Substrate-Bias Control. IEEE Trans Electron Devices 53(12):3025–3031CrossRefGoogle Scholar
  34. 34.
    Smith CS (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94(1):42–49CrossRefGoogle Scholar
  35. 35.
    Welser J, Hoyt JL, Gibbons JF (1992) NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures. In: IEDM technical digest, pp 1000–1002Google Scholar
  36. 36.
    Tezuka T, Sugiyama N, Takagi S, Kawakubo S (2002) Dislocation-free formation of relaxed SiGe-on-insulator layers. Appl Phys Lett 80(19):3560–3562CrossRefGoogle Scholar
  37. 37.
    Rim K, Chan K, Shi L, Boyd D, Ott J, Klymko N, Cardone F, Tai L, Koester S, Cobb M, Canaperi D, To B, Duch E, Babich I, Carruthers R, Saunders P, Walker G, Zhang Y, Steen M, Ieong M (2003) Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. In: IEDM technical digest, pp 47–52Google Scholar
  38. 38.
    Thompson SE, Suthram S, Sun Y, Sun G, Parthasarathy S, Chu M, Nishida T (2006) Future of strained si/semiconductors in nanoscale MOSFETs. In: IEDM technical digest, pp 681–684Google Scholar
  39. 39.
    Ootsuka F, Wakahara S, Ichinose K, Honzawa A, Wada S, Sato H, Ando T, Ohta H, Watanabe K, Onai T (2000) A highly dense, high-performance 130 nm node CMOS technology for large scale system-on-a-chip applications. In: IEDM technical digest, pp 575–578Google Scholar
  40. 40.
    Ito S, Namba H, Yamaguchi K, Hirata T, Ando K, Koyama S, Kuroki S, Ikezawa N, Suzuki T, Saitoh T, Horiuchi T (2000) Mechanical stress effect of etch-stop Nitride and its impact on deep submicron transistor design. In: IEDM technical digest, pp 247–250Google Scholar
  41. 41.
    Ghani T, Armstrong M, Auth C, Bost M, Charvat P, Glass G, Hoffmann T, Johnson K, Kenyon C, Klaus J, McIntyre B, Mistry K, Murthy A, Sandford J, Silberstein M, Sivakumar S, Smith P, Zawadzki K, Thompson S, Bohr M (2003) A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: IEDM technical digest, pp 978–980Google Scholar
  42. 42.
    Ang KW, Chui KJ, Bliznetsov V, Du A, Balasubramanian N, Li MF, Samudra G, Yeo Y (2004) Enhanced performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions. In: IEDM technical digest, pp 1069–1071Google Scholar
  43. 43.
    Takagi S, Hoyt J, Welser J, Gibbons J (1996) Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained-Si metal-oxide-semiconductor field-effect transistors. J Appl Phys 80(3):1567–1577CrossRefGoogle Scholar
  44. 44.
    Fischetti MV, Laux SE (1991) Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFET’s. IEEE Trans Electron Devices 38(3):650–660CrossRefGoogle Scholar
  45. 45.
    Heyns M, Alian A, Brammertz G, Caymax M, Chang YC, Chu LK, De Jaeger B, Eneman G, Gencarelli F, Groeseneken G, Hellings G, Hikavyy A, Hoffmann TY, Houssa M, Huyghebaert C, Leonelli D, Lin D, Loo R, Magnus W, Merckling C, Meuris M, Mitard J, Nyns L, Orzali T, Rooyackers R, Sioncke S, Soree B, Sun X, Vandooren A, Verhulst AS, Vincent B, Waldron N, Wang G, Wang WE, Witters L (2011) Advancing CMOS beyond the Si roadmap with Ge and III/V devices. In: IEDM technical digest, pp 299–302Google Scholar
  46. 46.
    Zhang R, Taoka N, Huang P-C, Takenaka M, Takagi S (2011) 1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation. In: IEDM technical digest, pp 642–645Google Scholar
  47. 47.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  48. 48.
    Han S-J, Valdes-Garcia A, Bol AA, Franklin AD, Farmer D, Kratschmer E, Jenkins KA, Haensch W (2011) Graphene technology with inverted-T gate and RF passives on 200 mm platform. In: IEDM technical digest, pp 19–22Google Scholar
  49. 49.
    Gopalakrishnan K, Griffin PB, Plummer JD (2005) Impact ionization MOS (I-MOS)-Part I: device and circuit simulations. IEEE Trans Electron Devices 52(1):69–76CrossRefGoogle Scholar
  50. 50.
    Aydin C, Zaslavsky A, Luryi S, Cristoloveanu S, Mariolle D, Fraboulet D, Deleonibus S (2004) Lateral interband tunneling transistor in silicon-on-insulator. Appl Phys Lett 84(10):1780–1782CrossRefGoogle Scholar
  51. 51.
    Kam H, King-Liu T-J, Alon E, Horowitz M (2008) Circuit-level requirements for MOSFET-replacement devices. In: IEDM technical digest, p 427Google Scholar
  52. 52.
    Kam H, Liu T-JK, Alon E (2012) Design requirements for steeply switching logic devices. IEEE Trans Electron Devices 59(2):326–334CrossRefGoogle Scholar
  53. 53.
    Salvatore GA, Bouvet D, Ionescu AM (2011) Demonstration of subthrehold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack. In: IEDM technical digest, pp 167–170Google Scholar
  54. 54.
    Fossum JG, Sundaresan R, Matloubian M (1987) Anomalous subthreshold current-voltage characteristics of n-channel SOI MOSFET’s. IEEE Electron Device Lett 8(11):544–546CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Low-Power Electronics Association and Project (LEAP)IbarakiJapan

Personalised recommendations