Colon Cancer Stem Cells

  • Ugo Testa


Early studies carried out in acute myelogenous leukaemia have supported the existence of tumour cells with stem-cell-like properties in this disease. On the basis of many subsequent studies, the cancer stem cell concept was formulated, postulating the existence of a small reservoir of self-sustaining cells able to self-renew and to maintain the tumour. During the last years cancer stem cells have been identified in solid cancers. Using CD133, CD44, EpCAM antibodies, human colon cancers have been demonstrated to contain cancer stem cells. The identification and characterization of these cells offer the unique opportunity to improve our understanding of the biology of colon cancer. On the other hand, colon cancer stem cells, that have been shown to be refractory to standard therapy, represent an important tool for discovering new anticancer agents.


Stem Cell Cancer Stem Cell Adenomatous Polyposis Coli Stem Cell Niche Paneth Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Leblond CP, Stevens CE, Begoroch R. (1948) Histological localization of newly-formed desoxyribonucleic acid. Science 108: 531–533.PubMedCrossRefGoogle Scholar
  2. Yen TH, Wright NA. (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2: 203-212.PubMedCrossRefGoogle Scholar
  3. Crosnier C, Stamataki D, Lewis J. (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7: 349–359.PubMedCrossRefGoogle Scholar
  4. Pinto D, Gregorieff A, Begthel H, et al (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17: 1709–1713.PubMedCrossRefGoogle Scholar
  5. Fre S, Huyghe M, Mourikis P, et al (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435: 959–963.CrossRefGoogle Scholar
  6. Mathur D, Bost A, Driven I, et al (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327: 210–213.PubMedCrossRefGoogle Scholar
  7. Lopez-Garcia C, Klein G, Simons BD et al (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330: 822–825.PubMedCrossRefGoogle Scholar
  8. Snippert HJ, van der Flier L, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 145: 134–144.CrossRefGoogle Scholar
  9. MacDonald BT, Tamai K, He X. (2009) Wnt/β-catenin signalling: components, mechanisms, and diseases. Dev Cell 17: 9–29.PubMedCrossRefGoogle Scholar
  10. Bovolenta P, Esteve P, Ruiz JM, et al (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121: 737–746.PubMedCrossRefGoogle Scholar
  11. Wu X, Tu X, Joeng KS, et al (2008) Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signalling. Cell 133: 340–353.PubMedCrossRefGoogle Scholar
  12. Park J, Venteicher AS, Hong Y, et al (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460: 66–72.PubMedCrossRefGoogle Scholar
  13. Sierra J, Yoshida T, Joazeiro CA et al (2006) The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20: 586–600.PubMedCrossRefGoogle Scholar
  14. Davidson G, Shen J, Huang YL, et al (2009) Cell cycle control of Wnt receptor activation. Dev cell 17: 788–799.PubMedCrossRefGoogle Scholar
  15. Reya T, Clevers H. (2005) Wnt signalling in stem cells and cancer. Nature 434: 843–850.PubMedCrossRefGoogle Scholar
  16. Van Es JH, van Gijn ME, Riccio D, et al (2005) Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435: 959–963.PubMedCrossRefGoogle Scholar
  17. Li L, Clevers H. (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327: 542–545.PubMedCrossRefGoogle Scholar
  18. Cheng H, Leblond CP. (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141: 537–561.PubMedCrossRefGoogle Scholar
  19. Ponder BA, Schmidt GH, Wilkinson MM, et al (1985) Derivation of mouse intestinal crypts from single progenitor cells. Nature 313: 689–691.PubMedCrossRefGoogle Scholar
  20. Schmidt GH, Winton DJ, Ponder BA (1988) Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development 103: 785–790.PubMedGoogle Scholar
  21. Gutierrez-Gonzalez L, Deheragoda M, Novelli M et al (2009) Analysis of the clonal architecture of the human small intestine epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J Pathol 217: 489–496.PubMedCrossRefGoogle Scholar
  22. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007.PubMedCrossRefGoogle Scholar
  23. Barker N, Clevers H (2007) Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 133: 1755–1760.PubMedCrossRefGoogle Scholar
  24. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459: 262–265.PubMedCrossRefGoogle Scholar
  25. Van der Flier L, van Gijn ME, Hatzis P et al (2009a) Transcription factor Achaete Suite-Like 2 controls intestinal stem cell fate. Cell 136: 903–912.PubMedCrossRefGoogle Scholar
  26. Lee G, White LS, Hurov KE, et al (2009) Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion. Proc Natl Acad Sci USA 106: 4701–4706.PubMedCrossRefGoogle Scholar
  27. Barker N, Huch M, Kujala P, et al (2010) Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cells 6: 25–36.CrossRefGoogle Scholar
  28. Garcia MI, Ghiani M, Lefort A, et al (2009) LGR5 deficiency deregulates Wnt signalling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biology 331: 58–67.CrossRefGoogle Scholar
  29. Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607.PubMedCrossRefGoogle Scholar
  30. Snippert HJ, van Es JH, van den Born M, et al (2009) Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 136: 2187–2194.PubMedCrossRefGoogle Scholar
  31. Van der Flier LG, Haegebarth A, Stauge DE, et al (2009b) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137: 15–17.PubMedCrossRefGoogle Scholar
  32. Kosinski C, Li VS, Chan AS, et al (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104: 15418–15423.PubMedCrossRefGoogle Scholar
  33. Zhang J, Liu WL, Thang DC, et al (2002) Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene 283: 83–93.PubMedCrossRefGoogle Scholar
  34. Sangiorgi E, Capecchi MR. (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet 40: 915–920.PubMedCrossRefGoogle Scholar
  35. Sangiorgi E, Capecchi MR. (2009) Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc Natl Acad Sci USA 106: 7101–7106.PubMedCrossRefGoogle Scholar
  36. Potten CS, Booth C, Tudor GL et al (2003) Identification of a putative intestinal stem cell and early lineage marker, musashi-1. Differentiation 71: 28–41.PubMedCrossRefGoogle Scholar
  37. Murayama M, Okamoto R, Tsuchiya K, et al (2009) Musashi-1 suppresses expression of Paneth cell-specific genes in human intestinal epithelial cells. J Gastroenterol 44: 173–182.PubMedCrossRefGoogle Scholar
  38. Gracz AD, Ramalingam S, Magness ST. (2010) Sox9-expression marks a subset of CD24-expressing small intestine epithelial cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol, 298: 4590–4600.Google Scholar
  39. Furuyama K, Kawaguchi Y, Akiyama H et al (2011) Continuous cell supply from Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genet 43: 34–41.PubMedCrossRefGoogle Scholar
  40. Giannakis M, Stappenbeck TS, Mills JC, et al (2006) Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 281: 11292–11300.PubMedCrossRefGoogle Scholar
  41. May R, Riehl TE, Hunt C, et al (2008) Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous coli/multiple intestinal neoplasia mice. Stem Cells 26: 630–637.PubMedCrossRefGoogle Scholar
  42. May R, Sureban SM, Hoang N, et al (2009) Doublecortin and CaM Kinase-like-1 and Leucine-Rich-Repeat-Containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells 27: 2571–2579.PubMedCrossRefGoogle Scholar
  43. Jin G, Ramanathan V, Quanta M, et al (2009) Inactivating cholecystokinin-2 receptor inhibits progastrin-dependent colonic crypt fission, proliferation, and colorectal cancer in mice. J Clin Invest 119: 2691–2701.PubMedGoogle Scholar
  44. Huang EH, Hynes MJ, Zhang T, et al (2009a) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69: 3382–3389.PubMedCrossRefGoogle Scholar
  45. Levin TG, Powell AE, DavesPS, et al (2010) Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gstroenterology 139: 2072–2082.Google Scholar
  46. Holmberg J, Genander M, Halford MM et al (2006) EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 125: 1151–1163.PubMedCrossRefGoogle Scholar
  47. Marsham E, Booth C, Potten CS. (2002) The intestinal epithelial stem cell. Bioessays 24: 91–98.CrossRefGoogle Scholar
  48. Fellous TG, McDonald S, Burkert J, et al (2009) A methodological approach to tracing cell lineage in human epithelial tissues. Stem Cells 27: 1410–1420.PubMedCrossRefGoogle Scholar
  49. Sato T, Van Es J, Snippert HJ et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469: 415–418.Google Scholar
  50. Scoville DH, Sato T, He XC, et al (2008) Current view: intestinal stem cells and signalling. Gastroenterology 134: 849–864.PubMedCrossRefGoogle Scholar
  51. Quyn AJ, Appleton PL, Carey FA, et al (2010) Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissues. Cell Stem Cell 5: 175–181.CrossRefGoogle Scholar
  52. Fearon ER, Vogelstein B. (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767.PubMedCrossRefGoogle Scholar
  53. Phelps RA, Chidester S, Dehghanizadeh S, et al (2009) A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 137: 623–634.PubMedCrossRefGoogle Scholar
  54. Miyazaki M, Furuya T, Shiraki A, et al (1999) The relationship of DNA ploidy to chromosomal instability in primary human colorectal cancers. Cancer Res 59: 5283–5285.PubMedGoogle Scholar
  55. Walther A, Johnstone E, Swanton C et al (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9: 489–499.PubMedCrossRefGoogle Scholar
  56. Barker N, Ridgway RA, van Es JH, et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611.PubMedCrossRefGoogle Scholar
  57. Boman BM, Fields JZ, Bohnham-Carter O et al (2001) Computer modelling implicates stem cell overproduction in colon cancer initiation. Cancer Res 61: 8408–8411.PubMedGoogle Scholar
  58. Boman BM, Huang E. (2008) Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J Clin Oncol 26: 2828–2838.PubMedCrossRefGoogle Scholar
  59. Boman BM, Wicha MS, Fields JZ, et al (2007) Symmetric division of human cancer stem cells- a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin Pharmacol Ther 81: 893–898.PubMedCrossRefGoogle Scholar
  60. Boman BM, Walters R, Fields JZ, et al (2004) Colonic crypt changes during adenoma development in familial adenomatous polyposis: immunohistochemical evidence for expansion of the crypt base cell population. Am J Pathol 165: 1489–1498.PubMedCrossRefGoogle Scholar
  61. Boman BM, Fields JZ, Cavanaugh KL, et al (2008) How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer. Cancer Res 6: 3304–3313.CrossRefGoogle Scholar
  62. Fan XS, Wu HY, Yu HP, et al (2010) Expression of Lgr5 in human colorectal carcinogenesis and its potential correlation with β-catenin. Int J Colorect Dis 25: 583–590.CrossRefGoogle Scholar
  63. Uchida H, Yamazaki K, Fukuma M, et al (2010) Overexpression of leucin-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci, in press.Google Scholar
  64. Lewis A, Segditsas S, Deheragoda M, et al (2010) Severe polyposis in Apc1322T mice is associated with submaximal Wnt signaling and increased expression of the stem cell marker Lgr5. Gut 59: 1680–1686.PubMedCrossRefGoogle Scholar
  65. Hamburger AW, Salmon SE. (1977) Primary bioassay of human tumor stem cells. Science 197: 461–463.PubMedCrossRefGoogle Scholar
  66. Reya T, Morrison SJ, Clarke MF, et al (2001) Stem cells, cancer and cancer stem cells. Nature 414: 105–111.PubMedCrossRefGoogle Scholar
  67. Bonnet D, Dick JE. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.CrossRefGoogle Scholar
  68. Sell S, Pierce GB. (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70: 6–22.PubMedGoogle Scholar
  69. Lobo NA, Shimono Y, Qian D, et al (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23: 675–699.PubMedCrossRefGoogle Scholar
  70. Corbeil D, Roper K, Hellwig A, et al (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275: 5512–5520.PubMedCrossRefGoogle Scholar
  71. Corbeil D, Roper K, Fargeas CA, et al (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2: 82–91.PubMedCrossRefGoogle Scholar
  72. Weigmann A, Corbeil D, Hellwig A, et al (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94: 12425–12430.PubMedCrossRefGoogle Scholar
  73. Ricci-Vitani L, Lombardi D, Pilozzi E, et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.CrossRefGoogle Scholar
  74. O’Brien CA, Pollett A, Gallinger S, et al (2007) A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature 445: 106–110.PubMedCrossRefGoogle Scholar
  75. Shmelkov SV, Butler JM,Hooper AT, et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118: 2111–2120.PubMedGoogle Scholar
  76. Vermeulen L, Todaro M, de Sousa Mello, et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105: 13427–13432.Google Scholar
  77. Horst D, Kriegl L, Engel J, et al (2008) CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 99: 1285–1289.PubMedCrossRefGoogle Scholar
  78. Horst D, Kriegl L, Engel J, et al (2009a) CD133 and nuclear beta-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 45: 2034–2040.PubMedCrossRefGoogle Scholar
  79. Artells R, Moreno I, Diaz T, et al (2010) Tumor CD133 mRNA expression and clinical outcome in surgically resected colorectal cancer patients. Eur J Cancer 46: 642–649.PubMedCrossRefGoogle Scholar
  80. Horst D, Scheel SK, Liebmann S, et al (2009b) The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 219: 427–434.PubMedCrossRefGoogle Scholar
  81. Kemper K, Sprick MR, de Bree M, et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70: 719–729.PubMedCrossRefGoogle Scholar
  82. Manhaba R, Klingbeil P, Nuebel T, et al (2008) CD44 and EpCAM cancer-initiating cell markers. Curr Mol Med 8: 784–804.CrossRefGoogle Scholar
  83. Orian-Rousseau V. (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46: 1271–1277.PubMedCrossRefGoogle Scholar
  84. Wielenga VJ, van der Neut R, Offerhaus GJ, et al (2000) CD44 glycoproteins in colorectal cancer: expression, function, and prognostic value. Adv Cancer Res 77: 169–187.PubMedCrossRefGoogle Scholar
  85. Kim HR, Wheeler MA, Wilson CM et al (2004) Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res 64: 4569–4576.PubMedCrossRefGoogle Scholar
  86. Dalerba P, Dylla SJ, Park IK, et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104: 10158–10163.PubMedCrossRefGoogle Scholar
  87. Chu P, Clanton DJ, Snipas TS, et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124: 1312–1321.PubMedCrossRefGoogle Scholar
  88. Pang R, Law WL, Chu A, et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6: 603–615.PubMedCrossRefGoogle Scholar
  89. Xu M, Yuan Y, Xia Y, et al (2008) Monoclonal antibody CC188 binds a carbohydrate epitope expressed on the surface of both colorectal cancer stem cells and their differentiated progeny. Clin Cancer Res 14: 7461–7469.PubMedCrossRefGoogle Scholar
  90. Munz M, Baeuerle PA, Gires O (2009) The emerging role of EpCAM in cancer and stem cell signalling. Cancer Res 69: 5627–5629.PubMedCrossRefGoogle Scholar
  91. Gires O, Klein CA, Baeuerle PA. (2009) On the abundance of EpCAM on cancer stem cells. Nature Rev Cancer 9: 143–150.CrossRefGoogle Scholar
  92. Itzkowitz SH, Yio X. (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287: G7–17.PubMedCrossRefGoogle Scholar
  93. Corpentino JE, Hynes MJ, Appelman HD, et al (2009). Aldehyde dehydrogenase-expression colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 69: 8208–8215.CrossRefGoogle Scholar
  94. Yeung TM, Gandhi SC, Wilding JL, et al (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107: 3722–3727.PubMedCrossRefGoogle Scholar
  95. Costello RT, Mallet F, Gaugler B, et al (2000) Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60: 4403–4411.PubMedGoogle Scholar
  96. Bao S, Wu Q, McLendon RE, et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.PubMedCrossRefGoogle Scholar
  97. Liu G, Yuan X, Zeng Z, et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67–77.PubMedCrossRefGoogle Scholar
  98. Salmaggi A, Boiardi A, Gelati M, et al (2006) Glioblastoma-derived tumospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54: 850–860.PubMedCrossRefGoogle Scholar
  99. Phillips TM, McBride WH, Pajonk F. (2006) The response of CD24 (-/low)/CD44 breast cancer-initiating cells to radiation J Natl Cancer Inst 98: 1777–1785.PubMedCrossRefGoogle Scholar
  100. Eramo A, Lotti F, Sette G, et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell death Differ 15: 504–514.PubMedCrossRefGoogle Scholar
  101. Todaro M, Alea MP, Di Stefano AB, et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1: 389–402.PubMedCrossRefGoogle Scholar
  102. Fang DD, Kim YI, Lee CN, et al (2010) Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Brit J Cancer, 102: 1265–1275.Google Scholar
  103. Bauer TW, Fan F, Liu W, et al (2007) Targeting of insulin-like growth factor-I receptor with a monoclonal antibody inhibits growth of hepatic metastases from human colon carcinoma in mice. Ann Surg Oncol 14: 2838–2846.PubMedCrossRefGoogle Scholar
  104. Dallas NA, Xia L, Fan F, et al (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69: 1951–1957.PubMedCrossRefGoogle Scholar
  105. Varnat F, Duquet A, Malerba M, et al (2009) Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumor growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1: 338–351.PubMedCrossRefGoogle Scholar
  106. Pasquale EB. (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Rev Cancer 10: 165–180.CrossRefGoogle Scholar
  107. Thorstensen L, Lind GE, Lovig T et al (2005) Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia 7: 99–108.PubMedCrossRefGoogle Scholar
  108. Garber K. (2009) Drugging the Wnt pathway: problems and progress. J Natl Cancer Inst 101: 548–550.PubMedCrossRefGoogle Scholar
  109. Vermeulen L, Melo F, van der Heijden M, et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol 12: 468–476.PubMedCrossRefGoogle Scholar
  110. Maier TJ, Janssen A, Geisslinger A, et al (2005) Targeting the beta catenin/APC pathway: a novel mechanism explain the cyclooxygenase-2-independent anticarcinogenic effect of celecoxib in human colon carcinoma cells. FASEB J 19: 1353–1355.PubMedGoogle Scholar
  111. Qiu W, Wang X, Leibowitz B et al (2010) Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal cells via SMAC-dependent apoptosis. Proc Natl Acad Sci USA 107: 2027–2032.Google Scholar
  112. Chen B, Dodge ME, Tang W, et al (2009a) Small molecule-mediated disruption of Wnt-dependent signalling in tissue regeneration and cancer. Nature Chem Biol 5: 100-107.CrossRefGoogle Scholar
  113. Huang SM, Mishina YM, Liu S, et al (2009b) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 462: 614–620.CrossRefGoogle Scholar
  114. Yashiroda Y, Okamoto R, Hatsugai K, et al (2010) A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor. Biochem Biophys Res Commun 394: 569–573.PubMedCrossRefGoogle Scholar
  115. Chen Z, Venkatesan AM, Dehnhardt CM, et al (2009b) 2,4-diamino-quinazolines as inhibitors of β-catenin/Tcf-4 pathway: potential treatment for colorectal cancer. Biorg Med Chem Letters 19: 4980–4983.CrossRefGoogle Scholar
  116. Dehnhardt CM, Venkatesan AM, Chen Z, et al (2010) Design and synthesis of novel diaminoquinazolines with in vivo efficacy for β-catenin/T-cell transcriptional factor 4 pathway inhibition. J Med Chem 53: 897–910.PubMedCrossRefGoogle Scholar
  117. Emami KH, Nguyen C, Ma H et al (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription. Proc Natl Acad Sci USA 101: 12682–12687.PubMedCrossRefGoogle Scholar
  118. Hoey T, Yen WC, Axelrod F et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5: 168–177.PubMedCrossRefGoogle Scholar
  119. Fischer M, Yen WC, Kapoun AM, et al (2011) Anti-DLL4 inhibits growth and reduces tumor initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res, 71: 1520–1525.Google Scholar
  120. Sasaki Y, Kosaka H, Usami K, et al (2010) Establishment of a novel monoclonal antibody against LGR5. Biochem Biophys Res Commun 394: 498–502.PubMedCrossRefGoogle Scholar
  121. Potten CS, Kovacs L, Hamilton E. (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7: 271–283.PubMedCrossRefGoogle Scholar
  122. Genander M, Halford MM, Xu NJ et al. (2009) Dissociation of EphB2 signalling pathways mediating progenitor cell proliferation and tumor suppression. Cell 139: 679–692.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Hematology, Oncology and Molecular MedicineIstituto Superiore di SanitàRomeItaly

Personalised recommendations