Skip to main content

Abstract

For sub-90 nm technologies, mismatch in transistor is one of the primary obstacles to reach a high yield rate for analog designs. For example, mismatch of CMOS devices nearly doubles for every process generation less than 90 nm [80, 104] due to an inverse-square-root-law dependence with the transistor area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Biagetti, S. Orcioni, C. Turchetti, P. Crippa, and M. Alessandrini, “SiSMA: A tool for efficient analysis of analog CMOS integrated circuits affected by device mismatch,” IEEE TCAD, pp. 192–207, 2004.

    Google Scholar 

  2. A. Demir, E. Liu, and A.Sangiovanni-Vincentelli, “Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations,” IEEE TCAD, pp. 493–505, 1996.

    Google Scholar 

  3. P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Pade approximation via the Lanczos process,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 5, pp. 639–649, May 1995.

    Article  Google Scholar 

  4. G. H. Golub and C. V. Loan, Matrix Computations, 3rd ed. The Johns Hopkins University Press, 1996.

    Google Scholar 

  5. F. Gong, X. Liu, H. Yu, S. X. Tan, and L. He, “A fast non-Monte-Carlo yield analysis and optimization by stochastic orthogonal polynomials,” ACM Trans. on Design Automation of Electronics Systems, 2012, in press.

    Google Scholar 

  6. C. J. Gu and J. Roychowdhury, “Model reduction via projection onto nonlinear manifolds, with applications to analog circuits and biochemical systems,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), Nov 2008.

    Google Scholar 

  7. J. Kim, K. Jones, and M. Horowitz, “Fast, non-Monte-Carlo estimation of transient performance variation due to device mismatch,” in Proc. IEEE/ACM Design Automation Conference (DAC), 2007.

    Google Scholar 

  8. H. Masuda, S. Ohkawa, A. Kurokawa, and M. Aoki, “Challenge: Variability characterization and modeling for 65- to 90-nm processes,” in Proc. IEEE Custom Integrated Circuits Conf., 2005.

    Google Scholar 

  9. C. McAndrew, J. Bates, R. Ida, and P. Drennan, “Efficient statistical BJT modeling, why beta is more than ic/ib,” in Proc. IEEE Bipolar/BiCMOS Circuits and Tech. Meeting, 1997.

    Google Scholar 

  10. A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced-order interconnect macro-modeling algorithm,” IEEE TCAD, pp. 645–654, 1998.

    Google Scholar 

  11. J. Oehm and K. Schumacher, “Quality assurance and upgrade of analog characteristics by fast mismatch analysis option in network analysis environment,” IEEE J. of Solid State Circuits, pp. 865–871, 1993.

    Google Scholar 

  12. M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of mos transistors,” IEEE J. of Solid State Circuits, pp. 1433–1439, 1989.

    Google Scholar 

  13. M. Rewienski and J. White, “A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 2, pp. 155–170, Feb 2003.

    Article  Google Scholar 

  14. J. Roychowdhury, “Reduced-order modelling of time-varying systems,” in Proc. Asia South Pacific Design Automation Conf. (ASPDAC), Jan 1999, pp. 53–56.

    Google Scholar 

  15. S. K. Tiwary and R. A. Rutenbar, “Faster, parametric trajectory-based macromodels via localized linear reductions,” in Proc. Int. Conf. on Computer Aided Design (ICCAD), Nov 2006, pp. 876–883.

    Google Scholar 

  16. D. Xiu and G. Karniadakis, “The Wiener-Askey polynomial chaos for stochastic differential equations,” SIAM J. Scientific Computing, vol. 24, no. 2, pp. 619–644, Oct 2002.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Yu, X. Liu, H. Wang, and S. X.-D. Tan, “A fast analog mismatch analysis by an incremental and stochastic trajectory piecewise linear macromodel,” in Proc. Asia South Pacific Design Automation Conf. (ASPDAC), Jan 2010, pp. 211–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, R., Tan, S.XD., Yu, H. (2012). Stochastic Analog Mismatch Analysis. In: Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0788-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0788-1_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0787-4

  • Online ISBN: 978-1-4614-0788-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics