Advertisement

Approximation of Besov Vectors by Paley–Wiener Vectors in Hilbert Spaces

Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 13)

Abstract

We develop an approximation theory in Hilbert spaces that generalizes the classical theory of approximation by entire functions of exponential type. The results advance harmonic analysis on manifolds and graphs, thus facilitating data representation, compression, denoising and visualization. These tasks are of great importance to machine learning, complex data analysis and computer vision.

Keywords

Hilbert Space Entire Function Besov Space Exponential Type Selfadjoint Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper was supported in part by the National Geospatial-Intelligence Agency University Research Initiative (NURI), grant HM1582-08-1-0019.

References

  1. 1.
    J. Akhiezer, Theory of approximation, Ungar, NY, 1956.MATHGoogle Scholar
  2. 2.
    J. Bergh, J. Lofstrom, Interpolation spaces, Springer-Verlag, 1976.Google Scholar
  3. 3.
    M. Birman and M. Solomyak, Spectral thory of selfadjoint operators in Hilbert space, D.Reidel Publishing Co., Dordrecht, 1987.Google Scholar
  4. 4.
    P. Butzer, H. Berens, Semi-Groups of operators and approximation, Springer, Berlin, 1967.MATHGoogle Scholar
  5. 5.
    M. Ganzburg, Best constants of harmonic approximation on classes associated with the Laplace operator, J. Approx. Theory 150 (2008), no. 2, 199–213.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    M. Ganzburg, Limit theorems in spline approximation, J. Math. Anal. Appl. 318 (2006), no. 1, 15–31.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. Ganzburg, Limit theorems in approximation theory, Anal. Math. 18 (1992), no. 1, 37–57.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. Krein, I. Pesenson, Interpolation Spaces and Approximation on Lie Groups, The Voronezh State University, Voronezh, 1990Google Scholar
  9. 9.
    S. Krein, Y. Petunin, E. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, 54. AMS, Providence, R.I., 1982.Google Scholar
  10. 10.
    S. M. Nikolskii, Approximation of functions of several variables and imbedding theorems, Springer, Berlin, 1975.Google Scholar
  11. 11.
    I. Pesenson, Interpolation spaces on Lie groups, (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 6, 1298–1303.MathSciNetGoogle Scholar
  12. 12.
    I. Pesenson, Nikolskii- Besov spaces connected with representations of Lie groups, (Russian) Dokl. Akad. Nauk SSSR 273 (1983), no. 1, 45–49.MathSciNetGoogle Scholar
  13. 13.
    I. Pesenson, The Best Approximation in a Representation Space of a Lie Group, Dokl. Acad. Nauk USSR, v. 302, No 5, pp. 1055-1059, (1988) (Engl. Transl. in Soviet Math. Dokl., v.38, No 2, pp. 384-388, 1989.)Google Scholar
  14. 14.
    I. Pesenson, The Bernstein Inequality in the Space of Representation of Lie group, Dokl. Acad. Nauk USSR 313 (1990), 86–90; English transl. in Soviet Math. Dokl. 42 (1991).Google Scholar
  15. 15.
    I. Pesenson, Approximations in the representation space of a Lie group, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1990, no. 7, 43–50; translation in Soviet Math. (Iz. VUZ) 34 (1990), no. 7, 49–57Google Scholar
  16. 16.
    I. Pesenson, On the abstract theory of Nikolskii-Besov spaces, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1988, no. 6, 59–68; translation in Soviet Math. (Iz. VUZ) 32 (1988), no. 6, 80–92Google Scholar
  17. 17.
    I. Pesenson, Bernstein-Nikolskii inequalities and Riesz interpolation formula on compact homogeneous manifolds, J. of Approx. Theory 150, (2008), no. 2, 175–198.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    I. Pesenson, Paley-Wiener approximations and multiscale approximations in Sobolev and Besov spaces on manifolds, J. Geom. Anal. 19 (2009), no. 2, 390–419.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    I. Pesenson, A discrete Helgason-Fourier transform for Sobolev and Besov functions on noncompact symmetric spaces, Radon transforms, geometry, and wavelets, 231–247, Contemp. Math., 464, Amer. Math. Soc., Providence, RI, 2008.Google Scholar
  20. 20.
    I. Pesenson, A. Zayed, Paley-Wiener subspace of vectors in a Hilbert space with applications to integral transforms, J. Math. Anal. Appl. 353 (2009), no. 2, 566582.Google Scholar
  21. 21.
    I. Pesenson, M. Pesenson, Sampling, filtering and sparse approximations on graphs, J. of Fourier Analysis and Applications, on line.Google Scholar
  22. 22.
    E. Titchmarsh, Theory of Fourier Integrals, Oxford University Press, 1948.Google Scholar
  23. 23.
    H. Triebel, Theory of function spaces II Monographs in Mathematics, 84. Birkhuser Verlag, Basel, 1992.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA
  2. 2.Department of Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations