Abstract

This chapter provides an introduction to copositive programming, which is linear programming over the convex conic of copositive matrices. Researchers have shown that many NP-hard optimization problems can be represented as copositive programs, and this chapter recounts and extends these results.

References

  1. 1.
    Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Mathematical Programming (series B) 124, 33–43 (2010)Google Scholar
  2. 2.
    Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: Analysis, algorithms, and engineering applications. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001)CrossRefGoogle Scholar
  3. 3.
    Berman, A., Rothblum, U.G.: A note on the computation of the CP-rank. Linear Algebra Appl. 419, 1–7 (2006)CrossRefGoogle Scholar
  4. 4.
    Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific (2003)Google Scholar
  5. 5.
    Bomze, I., Jarre, F.: A note on Burer’s copositive representation of mixed-binary QPs. Optimization Letters 4, 465–472 (2010)CrossRefGoogle Scholar
  6. 6.
    Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. Dedicated to Professor Naum Z. Shor on his 65th birthday. J. Global Optim. 24(2), 163–185 (2002)Google Scholar
  7. 7.
    Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Global Optim. 18(4), 301–320 (2000)CrossRefGoogle Scholar
  8. 8.
    Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20(1), 30–53 (2009)CrossRefGoogle Scholar
  9. 9.
    Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming 120, 479–495 (2009)CrossRefGoogle Scholar
  10. 10.
    Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Mathematical Programming Computation 2(1), 1–19 (2010)CrossRefGoogle Scholar
  11. 11.
    Burer, S., Anstreicher, K.M., Dür, M.: The difference between 5 ×5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431(9), 1539–1552 (2009)CrossRefGoogle Scholar
  12. 12.
    Burer, S., Dong, H.: Separation and relaxation for cones of quadratic forms. Manuscript, University of Iowa (2010) Submitted to Mathematical Programming.Google Scholar
  13. 13.
    de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)CrossRefGoogle Scholar
  14. 14.
    de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Programming 122(2, Ser. A), 225–246 (2010)Google Scholar
  15. 15.
    Dong, H., Anstreicher, K.: Separating Doubly Nonnegative and Completely Positive Matrices. Manuscript, University of Iowa (2010) To appear in Mathematical Programming. Available at http://www.optimization-online.org/DB_HTML/2010/03/2562.html.
  16. 16.
    Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121(2, Ser. A), 249–268 (2010)Google Scholar
  17. 17.
    Dür, M.: Copositive Programming—A Survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer (2010)Google Scholar
  18. 18.
    Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)Google Scholar
  19. 19.
    Eichfelder, G., Jahn, J.: Set-semidefinite optimization. Journal of Convex Analysis 15, 767–801 (2008)Google Scholar
  20. 20.
    Eichfelder, G., Povh, J.: On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints. Manuscript, Faculty of Information Studies, Slovenia, December (2010)Google Scholar
  21. 21.
    Faye, A., Roupin, F.: Partial lagrangian relaxation for general quadratic programming. 4OR 5, 75–88 (2007)Google Scholar
  22. 22.
    Gvozdenović, N., Laurent, M.: Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. In Lecture Notes in Computer Science, 3509, pp. 136–151. IPCO XI (2005)Google Scholar
  23. 23.
    Gvozdenović, N., Laurent, M.: Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization. SIAM J. Optim. 19(2), 592–615 (2008)CrossRefGoogle Scholar
  24. 24.
    Gvozdenović, N., Laurent, M.: The operator Ψ for the chromatic number of a graph. SIAM J. Optim. 19(2), 572–591 (2008)CrossRefGoogle Scholar
  25. 25.
    Hiriart-Urruty, J.-B., Seeger, A.: A variational approach to copositive matrices. SIAM Review, 52(4), 593–629 (2010)CrossRefGoogle Scholar
  26. 26.
    Maxfield, J.E., Minc, H.: On the matrix equation X X = A. Proc. Edinburgh Math. Soc. (2) 13, 125–129 (1962/1963)Google Scholar
  27. 27.
    Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Programming 39(2), 117–129 (1987)CrossRefGoogle Scholar
  28. 28.
    Natarajan, K., Teo, C., Zheng, Z.: Mixed zero-one linear progams under objective uncertainty: A completely positive representation. Operations Research, 59(3), 713–728, (2011)CrossRefGoogle Scholar
  29. 29.
    Nesterov, Y.E., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia (1994)CrossRefGoogle Scholar
  30. 30.
    Parrilo, P.: Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology (2000)Google Scholar
  31. 31.
    Peña, J., Vera, J., Zuluaga, L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)Google Scholar
  32. 32.
    Povh, J.: Towards the optimum by semidefinite and copositive programming : new approach to approximate hard optimization problems. VDM Verlag (2009)Google Scholar
  33. 33.
    Povh, J., Rendl, F.: A copositive programming approach to graph partitioning. SIAM J. Optim. 18(1), 223–241 (2007)CrossRefGoogle Scholar
  34. 34.
    Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3), 231–241 (2009)CrossRefGoogle Scholar
  35. 35.
    Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)CrossRefGoogle Scholar
  36. 36.
    Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented lagrangian methods for semidefinite programming. Manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, USA (2009)Google Scholar
  37. 37.
    Yildirim, E.A.: On the accuracy of uniform polyhedral approximations of the copositive cone. Manuscript, Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey (2009) To appear in Optimization Methods and Software.Google Scholar
  38. 38.
    Zhao, X., Sun, D., Toh, K.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Management SciencesUniversity of IowaIowa CityUSA

Personalised recommendations