Skip to main content

SDP Relaxations for Non-Commutative Polynomial Optimization

  • Chapter
  • First Online:
  • 5789 Accesses

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

Abstract

We consider the problem of minimizing an arbitrary hermitian polynomial p(X) in non-commutative variables X = (X1, , XN), where the polynomial p(X) is evaluated over all states and bounded operators (X1, , Xn) satisfying a finite set of polynomial constraints. Problems of this type appear frequently in areas as diverse as quantum chemistry, condensed matter physics, and quantum information science; finding numerical tools to attack them is thus essential. In this chapter, we describe a hierarchy of semidefinite programming relaxations of this generic problem, which converges to the optimal solution in the asymptotic limit. Furthermore, we derive sufficient optimality conditions for each step of the hierarchy. Our method is related to recent results in non-commutative algebraic geometry and can be seen as a generalization to the non-commutative setting of well-known semidefinite programming hierarchies that have been introduced in scalar (i.e. commutative) polynomial optimization. After presenting our results, we discuss at the end of the chapter some open questions and possible directions for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To see this, take \(\{{\overline{u}}_{i}\}\) to be the canonical basis of \({\mathbb{K}}^{s}\), and note that A = B ∗ B, with \(B ={ \sum \nolimits }_{i=1}^{s}{\overline{v}}_{i} \cdot {({\overline{u}}_{i})}^{{_\ast}}\). It follows that \(\mbox{ rank}(A) = \mbox{ rank}(B) =\dim (\mbox{ span}\{{\overline{v}{}_{i}\}}_{i})\).

  2. 2.

    The proof that we give is similar to the one of Lemma 21.1. An alternative proof based on a Gelfand–Naimark–Segal like construction is given in [49].

  3. 3.

    Actually, Pál and Vértesi’s algorithms work by optimizing over the set of operators and states defined by (21.58).

  4. 4.

    In the Schrödinger representation for the operators a, a ∗ , the Hilbert space is \({\mathcal{L}}^{2}(\mathbb{R})\), and, for any \(f(x) \in {\mathcal{L}}^{2}(\mathbb{R})\), the action of a over f(x) is given by \(af(x) = [xf(x) + f^{\prime}(x)]/\sqrt{2}\).

  5. 5.

    Actually, it is not necessary to invoke unbounded operators to get situations similar to this second point: the commutation condition i[X, Y ] ≥ 0 is satisfied in a non-trivial way only in infinite-dimensional spaces (see for instance  [20]).

  6. 6.

    In fact, this condition holds for any pair of arbitrary operators O1 and O2.

References

  1. Allcock, J., Brunner, N., Pawlowski, M., Scarani, V.: Recovering part of the boundary between quantum and nonquantum correlations from information causality. Phys. Rev. A 80, 040103 (2009)

    Google Scholar 

  2. Almeida, M.L., Bancal, J.-D., Brunner, N., Acín, A., Gisin, N., Pironio, S.: Guess your neighbors input: A multipartite nonlocal game with no quantum advantage. Phys. Rev. Lett. 104, 230404 (2010)

    Google Scholar 

  3. Bell, J.S.: Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  4. Brierley, S., Weigert, S.: Mutually unbiased bases and semi-definite programming. arXiv:1006.0093.

    Google Scholar 

  5. Brierley, S., Weigert, S.: Maximal sets of mutually unbiased quantum states in dimension 6. Phys. Rev. A78, 042312 (2008)

    Google Scholar 

  6. Briet, J., Buhrman, H., Toner, B.: A generalized grothendieck inequality and entanglement in xor games. arXiv:0901.2009.

    Google Scholar 

  7. Brunner, N., Pironio, S., Acín, A., Gisin, N., Méthot, A.A., Scarani, V..: Testing the dimension of hilbert spaces. Phys. Rev. Lett. 100, 210503 (2008)

    Google Scholar 

  8. Buhrman, H., Cleve, R., Wolf, R.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010)

    Google Scholar 

  9. Butterley, P., Hall., W.: Numerical evidence for the maximum number of mutually unbiased bases in dimension six. arXiv:quant-ph/0701122.

    Google Scholar 

  10. Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. http://ncsostools.fis.unm.si.

  11. Cerf, N., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2005)

    Google Scholar 

  12. Cimpric, J.: A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming. J. Math. Anal. Appl. 369, 443–452 (2010)

    Google Scholar 

  13. Collins D., Gisin, N.: A relevant two qubit bell inequality inequivalent to the chsh inequality. J. Phys. A: Math. Gen. 37, 1775–1787 (2004)

    Google Scholar 

  14. Curto, R.E., Fialkow, L.A.: Solution of the truncated complex moment problem with flat data. Mem. Amer. Math. Soc. 119, 568–619 (1996)

    Google Scholar 

  15. Doherty, A.C., Liang, Y.C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: Proceedings of IEEE Conference on Computational Complexity, College Park, Maryland, 23-26 June 2008

    Google Scholar 

  16. Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. arXiv:1004.3348.

    Google Scholar 

  17. Englert, B.G.Y., Aharonov, Y.: The mean king’s problem: Spin 1. Zeitschrift fur Naturforschung 56a, 16–19 (2001)

    Google Scholar 

  18. Froissart, M.: Constructive generalization of bell’s inequalities. Nuov. Cim. B 64, 241–251 (1981)

    Google Scholar 

  19. Fukuda, M., Braams, B.J., Nakata, M., Overton, M.L., Percus, J. K., Yamashita, M., Zhao, Z.: Large-scale semidefinite programs in electronic structure calculation. Math. Program. Ser. B 109, 553–580 (2007)

    Google Scholar 

  20. Halmos, P.R.: A hilbert space problem book. Springer-Verlag, New York (1982)

    Google Scholar 

  21. Helton, J.W.: “positive” noncommutative polynomials are sums of squares. Ann. of Math. 2nd Ser. 156, 675694 (2002)

    Google Scholar 

  22. Helton, J.W., McCullough, S.A.: A positivstellensatz for non-commutative polynomials. Trans. Amer. Math. Soc. 356, 37213737 (2004)

    Google Scholar 

  23. Helton, J.W., McCullough, S.A., Putinar, M.: Non-negative hereditary polynomials in a free *-algebra. Math. Z. 250, 515–522 (2005)

    Google Scholar 

  24. Henrion D., Lasserre, J.B.: Detecting global optimality and extracting solutions in gloptipoly. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control, vol. 149 of Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin-Heidelberg (2005)

    Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  26. Ivanovic, I.D.: Geometrical description of quantal state determination. J. Phys. A: Math. Gen. 14, 3241–3245 (1981)

    Google Scholar 

  27. Jibetean, D., Laurent, M., Semidefinite approximations for global unconstrained polynomial optimization. SIAM J. Optim. 16(2), 490–514 (2005)

    Google Scholar 

  28. Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Operator space theory: A natural framework for bell inequalities. 15, 170405 (2010)

    Google Scholar 

  29. Kempe, J., Regev, O., Toner, B.: Unique games with entangled provers are easy. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, 457–466 (2008)

    Google Scholar 

  30. Klep, I., Schweighofer, M.: A nichtnegativstellensatz for polynomials in noncommuting variables. Israel J. Math. 161(1), 17–27 (2007)

    Google Scholar 

  31. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Google Scholar 

  32. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications. Springer-Verlag, Berlin-Heidelberg (2009)

    Google Scholar 

  33. Liang, Y.-C., Lim, C.-W., Deng, D.-L.: Reexamination of a multisetting bell inequality for qudits. Phys. Rev. A 80, 052116 (2009)

    Google Scholar 

  34. Löfberg, J.: YALMIP : A Toolbox for Modeling and Optimization in MATLAB. http://control.ee.ethz.ch/char126joloef/yalmip.php.

  35. Masanes, L., S. Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nature Comms. 2, 184 (2011); also available at arxiv:1009.1567

    Google Scholar 

  36. Mazziotti, D.A.: Realization of quantum chemistry without wave functions through first-order semidefinite programming. Phys. Rev. Lett. 93, 213001 (2004)

    Google Scholar 

  37. Mazziotti, D.A. (ed.): Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules, vol. 134 of Advances in Chemical Physics. Wiley, New York (2007)

    Google Scholar 

  38. Mora, T.: An introduction to commutative and noncommutative gröbner bases. Theor. Comput. Sci. 134, 131–173 (1994)

    Google Scholar 

  39. Nahas, J.: On the positivstellensatz in weyl’s algebra. Proc. Amer. Math. Soc. 138, 987–995 (2010)

    Google Scholar 

  40. Navascués, M., Pironio, S., Acín, A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98, 010401 (2007)

    Google Scholar 

  41. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semdefinite programs characterizing the set of quantum correlations. New J. Phys. 10, 073013 (2008)

    Google Scholar 

  42. Navascués, M., Plenio, M.B., García-Sáez, A., Pironio, S., Acín, A.: Article in preparation.

    Google Scholar 

  43. Navascués, M., Wunderlich, H.: A glance beyond the quantum model. Proc. Roy. Soc. Lond. A 466, 881–890, (2009)

    Google Scholar 

  44. Pál, K.F., Vértesi., T.: Quantum bounds on bell inequalities. Phys. Rev. A 79, 022120 (2008)

    Google Scholar 

  45. Pál, K.F., Vértesi., T.: Bounding the dimension of bipartite quantum systems. Phys. Rev. A 79, 042106 (2009)

    Google Scholar 

  46. Pál, K.F., Vértesi., T.: Maximal violation of a bipartite three-setting, two-outcome bell inequality using infinite-dimensional quantum systems. Phys. Rev. A 82, 022116 (2010)

    Google Scholar 

  47. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96, 293–320 (2003)

    Google Scholar 

  48. Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by bells theorem. Nature 464, 1021–1024 (2010)

    Google Scholar 

  49. Pironio, S., Navascués, M., Acín, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20, 2157–2180 (2010)

    Google Scholar 

  50. Pisier, G.: Introduction to Operator Space Theory. Cambridge Univ. Press, Cambridge (2003)

    Google Scholar 

  51. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969-984 (1993)

    Google Scholar 

  52. Savchuk, Y., Schmüdgen, K.: On unbounded induced representations of ∗ -algebras. arXiv:0806.2428v1.

    Google Scholar 

  53. Schmüdgen, K.A.: Strict positivstellensatz for the weyl algebra. Math. Ann. 331, 779–794 (2005)

    Google Scholar 

  54. Scholz, V.B., Werner, R.F.: Tsirelson’s problem. arXiv:0812.4305.

    Google Scholar 

  55. Śliwa, C.: Symmetries of the bell correlation inequalities. Phys. Lett. A 317, 165–168 (2003)

    Google Scholar 

  56. Sturm, J.F.: SeDuMi, a MATLAB toolbox for optimization over symmetric cones. http://sedumi.mcmaster.ca.

  57. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry: introduction to advanced electronic structure theory. Dover publications Inc., Mineola, New York (1996)

    Google Scholar 

  58. Tsirelson, B.S.: Some results and problems on quantum bell-type inequalities. Hadronic J. Supp. 8(4),329–345 (1993)

    Google Scholar 

  59. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Google Scholar 

  60. Voiculescu, D.: Free probability theory. American Mathematical Society, Providence, Rhode Island, USA (1997)

    Google Scholar 

  61. von Neumann, J.: On rings of operators. reduction theory. Ann. of Math. 2nd Series 50, 401-485 (1949)

    Google Scholar 

  62. Wehner, S.: Tsirelson bounds for generalized clauser-horne-shimony-holt inequalities. Phys. Rev. A 73, 022110 (2006)

    Google Scholar 

  63. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Navascués .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Navascués, M., Pironio, S., Acín, A. (2012). SDP Relaxations for Non-Commutative Polynomial Optimization. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_21

Download citation

Publish with us

Policies and ethics