Skip to main content

Biomechanics and Etiology of ACL Graft Failure

  • Chapter
  • First Online:

Abstract

Etiology of failure of primary ACL reconstruction is varied, and may be categorized with regard to timing in relation to the index procedure. While early graft failures (<3 months) are typically related to loss of fixation, sepsis, or aseptic biological reaction, more common are failures in the 3–12 month postoperative range which are often due to errors in surgical technique or aggressive physical therapy. Late failures are typically caused by trauma; a failure at any time may be multifactorial in nature. Understanding the potential cause(s) of graft failure is imperative for the treating surgeon prior to consideration of revision ACL reconstruction. This chapter will review the biomechanics of the native and reconstructed ACL and discuss the numerous potential failure mechanisms of ACL graft tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH. Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med. 2012;40:800–7.

    Article  PubMed  Google Scholar 

  2. MARS Group, Wright RW, Huston LJ, Spindler KP, Dunn WR, Haas AK, et al. Descriptive epidemiology of the multicenter ACL revision study (MARS) cohort. Am J Sports Med. 2010;38(10):1979–86.

    Article  PubMed  Google Scholar 

  3. Liu SH, Panossian V, al-Shaikh R, Tomin E, Shepherd E, Finerman GA, et al. Morphology and matrix composition during early tendon to bone healing. Clin Orthop Relat Res. 1997;339:253–60.

    Article  PubMed  Google Scholar 

  4. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75(12):1795–803.

    PubMed  CAS  Google Scholar 

  5. Emond CE, Woelber EB, Kurd SK, Ciccotti MG, Cohen SB. A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. J Bone Joint Surg Am. 2011;93(6):572–80.

    Article  PubMed  Google Scholar 

  6. Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W. Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d, l-lactide, and poly-d, l-lactide-tricalcium phosphate screws. Arthroscopy. 2006;22(11):1204–10.

    Article  PubMed  Google Scholar 

  7. Coleridge SD, Amis AA. A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2004;12(5):391–7.

    Article  PubMed  Google Scholar 

  8. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med. 2003;31(2):182–8.

    PubMed  Google Scholar 

  9. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med. 2003;31(2):174–81.

    PubMed  Google Scholar 

  10. Brown Jr CH, Wilson DR, Hecker AT, Ferragamo M. Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy. 2004;20(9):922–35.

    PubMed  Google Scholar 

  11. Hammond KE, Dierckman BD, Potini VC, Xerogeanes JW, Labib SA, Hutton WC. Lateral femoral cortical breach during anterior cruciate ligament reconstruction: a biomechanical analysis. Arthroscopy. 2011;28(3):365–71.

    PubMed  Google Scholar 

  12. Sabat D, Kundu K, Arora S, Kumar V. Tunnel widening after anterior cruciate ligament reconstruction: a prospective randomized computed tomography-based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy. 2011;27(6):776–83.

    Article  PubMed  Google Scholar 

  13. Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R, Fink C. Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy. 2009;25(7):767–76.

    Article  PubMed  Google Scholar 

  14. Fong SY, Tan JL. Septic arthritis after arthroscopic anterior cruciate ligament reconstruction. Ann Acad Med Singapore. 2004;33(2):228–34.

    PubMed  CAS  Google Scholar 

  15. Mouzopoulos G, Fotopoulos VC, Tzurbakis M. Septic knee arthritis following ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2009;17(9):1033–42.

    Article  PubMed  Google Scholar 

  16. McAllister DR, Parker RD, Cooper AE, Recht MP, Abate J. Outcomes of postoperative septic arthritis after anterior cruciate ligament reconstruction. Am J Sports Med. 1999;27(5):562–70.

    PubMed  CAS  Google Scholar 

  17. Akhtar MA, Bhattacharya R, Ohly N, Keating JF. Revision ACL reconstruction—causes of failure and graft choices. Br J Sports Med. 2011;45(15):A15–6.

    Article  Google Scholar 

  18. Corsetti JR, Jackson DW. Failure of anterior cruciate ligament reconstruction: the biologic basis. Clin Orthop Relat Res. 1996;325:42–9.

    Article  PubMed  Google Scholar 

  19. Johnson DL, Fu FH. Anterior cruciate ligament reconstruction: why do failures occur? Instr Course Lect. 1995;44:391–406.

    PubMed  CAS  Google Scholar 

  20. Jackson DW, Gasser SI. Tibial tunnel placement in ACL reconstruction. Arthroscopy. 1994;10(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  21. Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF. Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg Am. 2000;82-A(8):1071–82.

    PubMed  CAS  Google Scholar 

  22. Williams 3rd RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007;89(4):718–26.

    Article  PubMed  Google Scholar 

  23. Wilson TW, Zafuta MP, Zobitz M. A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts. Am J Sports Med. 1999;27(2):202–7.

    PubMed  CAS  Google Scholar 

  24. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH. Impingement pressure in the anatomical and nonanatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med. 2010;38(8):1611–7.

    Article  PubMed  Google Scholar 

  25. Wetzler MJ, Bartolozzi AR, Gillespie MJ, et al. Revision anterior cruciate ligament reconstruction. Oper Tech Orthop. 1996;6:181–9.

    Article  Google Scholar 

  26. Greis PE, Johnson DL, Fu FH. Revision anterior cruciate ligament surgery: causes of graft failure and technical considerations of revision surgery. Clin Sports Med. 1993;12(4):839–52.

    PubMed  CAS  Google Scholar 

  27. Silva A, Sampaio R, Pinto E. ACL reconstruction: comparison between transtibial and anteromedial portal techniques. Knee Surg Sports Traumatol Arthrosc. 2012;20(5):896–903.

    Google Scholar 

  28. Sim JA, Gadikota HR, Li JS, Li G, Gill TJ. Biomechanical evaluation of knee joint laxities and graft forces after anterior cruciate ligament reconstruction by anteromedial portal, outside-in, and transtibial techniques. Am J Sports Med. 2011;39(12):2604–10.

    Article  PubMed  Google Scholar 

  29. Bowers AL, Bedi A, Lipman JD, Potter HG, Rodeo SA, Pearle AD, et al. Comparison of anterior cruciate ligament tunnel position and graft obliquity with transtibial and anteromedial portal femoral tunnel reaming techniques using high-resolution magnetic resonance imaging. Arthroscopy. 2011;27(11):1511–22.

    Article  PubMed  Google Scholar 

  30. Heming JF, Rand J, Steiner ME. Anatomical limitations of transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med. 2007;35(10):1708–15.

    Article  PubMed  Google Scholar 

  31. Steiner ME, Battaglia TC, Heming JF, Rand JD, Festa A, Baria M. Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med. 2009;37(10):1912–9.

    Article  PubMed  Google Scholar 

  32. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(10):982–92.

    Article  PubMed  Google Scholar 

  33. Scopp JM, Jasper LE, Belkoff SM, Moorman 3rd CT. The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy. 2004;20(3):294–9.

    Article  PubMed  Google Scholar 

  34. Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, et al. Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med. 2011;39(2):366–73.

    Article  PubMed  Google Scholar 

  35. Howell SM. Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1998;6 Suppl 1:S49–55.

    Article  PubMed  Google Scholar 

  36. Miller MD, Olszewski AD. Posterior tibial tunnel placement to avoid anterior cruciate ligament graft impingement by the intercondylar roof. An in vitro and in vivo study. Am J Sports Med. 1997;25(6):818–22.

    Article  PubMed  CAS  Google Scholar 

  37. Muneta T, Yamamoto H, Ishibashi T, Asahina S, Murakami S, Furuya K. The effects of tibial tunnel placement and roofplasty on reconstructed anterior cruciate ligament knees. Arthroscopy. 1995;11(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  38. Maak TG, Bedi A, Raphael BS, Citak M, Suero EM, Wickiewicz T, et al. Effect of femoral socket position on graft impingement after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39(5):1018–23.

    Article  PubMed  Google Scholar 

  39. Blythe A, Tasker T, Zioupos P. ACL graft constructs: in-vitro fatigue testing highlights the occurrence of irrecoverable lengthening and the need for adequate (pre)conditioning to avert the recurrence of knee instability. Technol Health Care. 2006;14(4–5):335–47.

    PubMed  CAS  Google Scholar 

  40. Howard ME, Cawley PW, Losse GM, Johnston 3rd RB. Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: the effects of graft pretensioning. Arthroscopy. 1996;12(3):287–92.

    Article  PubMed  CAS  Google Scholar 

  41. Graf B, Uhr F. Complications of intra-articular anterior cruciate reconstruction. Clin Sports Med. 1988;7(4):835–48.

    PubMed  CAS  Google Scholar 

  42. Mohtadi NG, Chan DS, Dainty KN, Whelan DB. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2011;9, CD005960.

    PubMed  Google Scholar 

  43. Li S, Su W, Zhao J, Xu Y, Bo Z, Ding X, et al. A meta-analysis of hamstring autografts versus bone-patellar tendon-bone autografts for reconstruction of the anterior cruciate ligament. Knee. 2011;18(5):287–93.

    Article  PubMed  Google Scholar 

  44. Newhouse KE, Paulos LE. Complications of knee ligament surgery. In: Nicholas JA, Hershman EB, editors. The lower extremity and spine in sports medicine. St. Louis: Mosby; p. 901–8.

    Google Scholar 

  45. O’Brien SJ, Warren RF, Pavlov H, Panariello R, Wickiewicz TL. Reconstruction of the chronically insufficient anterior cruciate ligament with the central third of the patellar ligament. J Bone Joint Surg Am. 1991;73(2):278–86.

    PubMed  Google Scholar 

  46. Noyes FR, Stowers SF, Grood ES, Cummings J, VanGinkel LA. Posterior subluxations of the medial and lateral tibiofemoral compartments. An in vitro ligament sectioning study in cadaveric knees. Am J Sports Med. 1993;21(3):407–14.

    Article  PubMed  CAS  Google Scholar 

  47. Paulos LE, Wnorowski DC, Greenwald AE. Infrapatellar contracture syndrome. Diagnosis, treatment, and long-term followup. Am J Sports Med. 1994;22(4):440–9.

    Article  PubMed  CAS  Google Scholar 

  48. Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med. 2001;29(2):226–31.

    PubMed  CAS  Google Scholar 

  49. Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W. Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006. Arch Orthop Trauma Surg. 2007;127(9):743–52.

    Article  PubMed  Google Scholar 

  50. Sakane M, Livesay GA, Fox RJ, Rudy TW, Runco TJ, Woo SL. Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc. 1999;7(2):93–7.

    Article  PubMed  CAS  Google Scholar 

  51. Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH. Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med. 2011;39(10):2187–93.

    Article  PubMed  Google Scholar 

  52. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591–7.

    Article  PubMed  Google Scholar 

  53. Wright RW, Fetzer GB. Bracing after ACL reconstruction: a systematic review. Clin Orthop Relat Res. 2007;455:162–8.

    Article  PubMed  Google Scholar 

  54. Trojani C, Sbihi A, Djian P, Potel JF, Hulet C, Jouve F, et al. Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):196–201.

    Article  PubMed  Google Scholar 

  55. Wright RW, Magnussen RA, Dunn WR, Spindler KP. Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction: a systematic review. J Bone Joint Surg Am. 2011;93(12):1159–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Fabricant MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fabricant, P.D., McCarthy, M.M., Pearle, A.D., Ranawat, A.S. (2014). Biomechanics and Etiology of ACL Graft Failure. In: Marx, R. (eds) Revision ACL Reconstruction. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0766-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0766-9_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0765-2

  • Online ISBN: 978-1-4614-0766-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics