Reinnervation and Revascularization in Engineered ACL Healing



The nerve and blood supply of the ACL are important for its optimal function. The mechanoreceptors of the ACL help guide the surrounding musculature to stabilize the knee and keep it within a healthy sphere of motion. The blood supply is critical for maintaining a nutritional flow and supporting the reparative cells within the graft. Thus, restoring and maintaining these functions after injury are important. In this chapter, we will review what is known about the fate of the nerve and blood supply of the ACL after injury, as well as after ACL reconstruction. Early data on the response of the blood supply and nerve fibers after bio-enhanced ACL repair are also be presented.


Tendon Graft Free Nerve Ending Free Tendon Graft Synovial Covering Elevated Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers RO1-AR054099 and RO1-AR056834. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Lohmander LS et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Pine M et al. Controlling costs without compromising quality: paying hospitals for total knee replacement. Med Care. 2010;48(10):862–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Beynnon BD et al. Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. Am J Sports Med. 2005;33(3):347–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Biedert RM, Stauffer E, Friederich NF. Occurrence of free nerve endings in the soft tissue of the knee joint. A histologic investigation. Am J Sports Med. 1992;20(4):430–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Raunest J, Sager M, Burgener E. Proprioception of the cruciate ligaments: receptor mapping in an animal model. Arch Orthop Trauma Surg. 1998;118(3):159–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. Anat Rec. 1986;214(2):204–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T. Cruciate ligament reflexes. J Electromyogr Kinesiol. 2002;12(3):177–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Dyhre-Poulsen P, Krogsgaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol. 2000;89(6):2191–5.PubMedGoogle Scholar
  9. 9.
    Friemert B et al. Intraoperative direct mechanical stimulation of the anterior cruciate ligament elicits short- and medium-latency hamstring reflexes. J Neurophysiol. 2005;94(6):3996–4001.PubMedCrossRefGoogle Scholar
  10. 10.
    Jerosch J, Prymka M. Proprioceptive capacity of the knee joint area in patients after rupture of the anterior cruciate ligament. Unfallchirurg. 1996;99(11):861–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Jerosch J, Prymka M. Knee joint proprioception in normal volunteers and patients with anterior cruciate ligament tears, taking special account of the effect of a knee bandage. Arch Orthop Trauma Surg. 1996;115(3–4):162–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Simank HG et al. Demonstration of the blood supply of human cruciate ligaments using the plastination method. Z Orthop Ihre Grenzgeb. 1995;133(1):39–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Clancy Jr WG et al. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am. 1981;63(8):1270–84.PubMedGoogle Scholar
  14. 14.
    Murray MM et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Halata Z, Haus J. The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol (Berl). 1989;179(5):415–21.CrossRefGoogle Scholar
  16. 16.
    Haus J, Refior HJ. A study of the synovial and ligamentous structure of the anterior cruciate ligament. Int Orthop. 1987;11(2):117–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Fromm B, Kummer W. Nerve supply of anterior cruciate ligaments and of cryopreserved anterior cruciate ligament allografts: a new method for the differentiation of the nervous tissues. Knee Surg Sports Traumatol Arthrosc. 1994;2(2):118–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Halata Z. Ruffini corpuscle–a stretch receptor in the connective tissue of the skin and locomotion apparatus. Prog Brain Res. 1988;74:221–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferrell WR. The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. J Physiol. 1980;299:85–99.PubMedGoogle Scholar
  20. 20.
    Lundberg A, Malmgren K, Schomburg ED. Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. J Physiol. 1978;284:327–43.PubMedGoogle Scholar
  21. 21.
    Gruber J, Wolter D, Lierse W. Anterior cruciate ligament reflex (LCA reflex). Unfallchirurg. 1986;89(12):551–4.PubMedGoogle Scholar
  22. 22.
    Chang HY et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2(2):E7.PubMedCrossRefGoogle Scholar
  23. 23.
    Lansdown AB, Sampson B, Rowe A. Experimental observations in the rat on the influence of cadmium on skin wound repair. Int J Exp Pathol. 2001;82(1):35–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Engin C et al. Delayed effect of denervation on wound contraction in rat skin. Plast Reconstr Surg. 1996;98(6):1063–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Westerman RA et al. The role of skin nociceptive afferent nerves in blister healing. Clin Exp Neurol. 1993;30:39–60.PubMedGoogle Scholar
  26. 26.
    Smith PG, Liu M. Impaired cutaneous wound healing after sensory denervation in developing rats: effects on cell proliferation and apoptosis. Cell Tissue Res. 2002;307(3):281–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Anand P et al. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med. 1996;2(6):703–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Richards AM et al. Cellular changes in denervated tissue during wound healing in a rat model. Br J Dermatol. 1999;140(6):1093–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Murray MM et al. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82-A(10):1387–97.PubMedGoogle Scholar
  30. 30.
    Lanzetta A et al. The nervous structures of anterior cruciate ligament of human knee, healthy and lesioned, studied with confocal scanning laser microscopy. Ital J Anat Embryol. 2004;109(3):167–76.PubMedGoogle Scholar
  31. 31.
    Lee BI et al. Immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc. 2009;17(9):1095–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Sonnery-Cottet B et al. Arthroscopic identification of isolated tear of the posterolateral bundle of the anterior cruciate ligament. Arthroscopy. 2009;25(7):728–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Aune AK et al. Nerve regeneration during patellar tendon autograft remodelling after anterior cruciate ligament reconstruction: an experimental and clinical study. J Orthop Res. 1996; 14(2):193–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Biedert RM, Zwick EB. Ligament-muscle reflex arc after anterior cruciate ligament reconstruction: electromyographic evaluation. Arch Orthop Trauma Surg. 1998;118(1–2):81–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Iwasa J et al. Decrease in anterior knee laxity by electrical stimulation of normal and reconstructed anterior cruciate ligaments. J Bone Joint Surg Br. 2006;88(4):477–83.PubMedGoogle Scholar
  36. 36.
    Krogsgaard MR, Fischer-Rasmussen T, Dyhre-Poulsen P. Absence of sensory function in the reconstructed anterior cruciate ligament. J Electromyogr Kinesiol. 2011;21(1):82–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Shino K et al. Surface blood flow and histology of human anterior cruciate ligament allografts. Arthroscopy. 1991;7(2):171–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Unterhauser FN et al. Endoligamentous revascularization of an anterior cruciate ligament graft. Clin Orthop Relat Res. 2003;414:276–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982; 64(2):217–24.PubMedGoogle Scholar
  40. 40.
    Ntoulia A et al. Revascularization process of the bone–patellar tendon–bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39(7):1478–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Joshi SM et al. Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med. 2009;37(12):2401–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Mastrangelo AN et al. Immature animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals. J Orthop Res. 2010;28(8):1100–6.PubMedGoogle Scholar
  43. 43.
    Mastrangelo AN et al. Reduced platelet concentration does not harm PRP effectiveness for ACL repair in a porcine in vivo model. J Orthop Res. 2011;29(7):1002–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Murray MM et al. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res. 2007;25(8):1007–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, Division of Sports MedicineBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations