Tissue Engineering of Ligaments and Tendons



Tissue engineering is a creative process where cells, scaffolds, and growth factors are combined to form a construct that can be used to replace or regenerate injured tissues. Cells that are specific to the tissue of interest can be used (for ligament, one might select the fibroblast) or can be earlier progenitor cells (e.g., mesenchymal stem cells) that can be coerced into turning into fibroblasts. Cells can also be implanted with a scaffold or encouraged to come into a scaffold from the local environment in situ. Scaffolds can be mechanically strong, particular for replacing load bearing structures, or they can be purely biologic in function, for example, when supplementing a suture repair where the sutures will carry the load. The desired signaling molecules may be multiple and complex as presented in the prior chapter on wound healing; thus, autologous cells capable of releasing these factors over days to weeks might be useful as sustained delivery systems.


Anterior Cruciate Ligament Tissue Engineering Hyaluronic Acid Primary Repair Autologous Chondrocyte Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers RO1-AR054099 and RO1-AR056834. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Mayo Robson A. Ruptured cruciate ligaments and their repair by operation. Ann Surg. 1903;37:716–8.Google Scholar
  3. 3.
    Sandberg R, Balkfors B, Nilsson B, Westlin N. Operative versus non-operative treatment of recent injuries to the ligaments of the knee. A prospective randomized study. J Bone Joint Surg Am. 1987;69(8):1120–6.PubMedGoogle Scholar
  4. 4.
    Feagin Jr JA, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4(3):95–100.PubMedCrossRefGoogle Scholar
  5. 5.
    Ferretti A, Conteduca F, De Carli A, Fontana M, Mariani PP. Osteoarthritis of the knee after ACL reconstruction. Int Orthop. 1991;15(4):367–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Spindler KP, Warren TA, Callison Jr JC, Secic M, Fleisch SB, Wright RW. Clinical outcome at a minimum of five years after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 2005;87(8):1673–9.PubMedCrossRefGoogle Scholar
  8. 8.
    von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269–73.CrossRefGoogle Scholar
  9. 9.
    Frank C, Amiel D, Woo SL, Akeson W. Normal ligament properties and ligament healing. Clin Orthop Relat Res. 1985;(196):15–25.Google Scholar
  10. 10.
    Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1984;1(3):257–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82(10):1387–97.PubMedGoogle Scholar
  12. 12.
    Murray MM, Bennett R, Zhang X, Spector M. Cell outgrowth from the human ACL in vitro: regional variation and response to TGF-beta1. J Orthop Res. 2002;20(4):875–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Murray MM, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22(17):2393–402.PubMedCrossRefGoogle Scholar
  14. 14.
    Nehrer S, Breinan HA, Ramappa A, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997;38(2):95–104.PubMedCrossRefGoogle Scholar
  15. 15.
    Dorotka R, Toma CD, Bindreiter U, Zehetmayer S, Nehrer S. Characteristics of ovine articular chondrocytes in a three-dimensional matrix consisting of different crosslinked collagen. J Biomed Mater Res B Appl Biomater. 2005;72(1):27–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-­seeded ligament analogs after autogenous implantation. J Orthop Res. 1998;16(4):414–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995;29(11):1363–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiig ME, Amiel D, VandeBerg J, Kitabayashi L, Harwood FL, Arfors KE. The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. J Orthop Res. 1990;8(3):425–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Cristino S, Grassi F, Toneguzzi S, et al. Analysis of mesenchymal stem cells grown on a three-­dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A. 2005;73(3): 275–83.PubMedGoogle Scholar
  20. 20.
    Smith Jr GN, Mickler EA, Myers SL, Brandt KD. Effect of intraarticular hyaluronan injection on synovial fluid hyaluronan in the early stage of canine post-traumatic osteoarthritis. J Rheumatol. 2001;28(6):1341–6.PubMedGoogle Scholar
  21. 21.
    Sonoda M, Harwood FL, Amiel ME, Moriya H, Amiel D. The effects of hyaluronan on the meniscus in the anterior cruciate ligament-deficient knee. J Orthop Sci. 2000;5(2):157–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee CH, Shin HJ, Cho IH, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26(11):1261–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen J, Altman GH, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A. 2003;67(2): 559–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Deuel T, Chang Y. Growth factors. 3rd ed. Academic Press; Waltham, MA. 2007.Google Scholar
  25. 25.
    Vavken P, Saad FA, Fleming BC, Murray MM. VEGF receptor mRNA expression by ACL fibroblasts is associated with functional healing of the ACL. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1675–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Vavken P, Saad FA, Murray MM. Age dependence of expression of growth factor receptors in porcine ACL fibroblasts. J Orthop Res. 2010;28(8):1107–12.PubMedGoogle Scholar
  27. 27.
    Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am. 2007;89(11):2485–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Goulet F, Germaine L, Rancourt D, Caron C, Nromand A, Aufer F. Tendons and ligaments. 3rd ed. Elsevier; Amsterdam, Netherlands. 2007.Google Scholar
  29. 29.
    Murray MM, Spindler KP, Devin C, et al. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res. 2006;24(4):820–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res. 2007;25(8):1007–17.PubMedCrossRefGoogle Scholar
  31. 31.
    Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Vavken P et al. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy. 2012;28(5):672–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Orthopedic Surgery, Division of Sports MedicineBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations